


# Introduction into GRANTA EduPack

MATERIAL SELECTION OF SPRINGS FOR JUMPING LOCOMOTION AND HIGH-PRESSURE TURBINE DISK

VYSHAK SURESHKUMAR

202090275



جامعة الإمارات العربية المتحدة

United Arab Emirates Universi

UAEU

All of level 1 with around 100 widely used material • with around 110 widely used materials

٠

•

•

.

- Additional numerical data, design guidelines and technical notes •
- Typically used for people who are finishing their bachelor degrees

| election Project                                                 | × 命+     | Home ×                         |                                    |                                        |   |
|------------------------------------------------------------------|----------|--------------------------------|------------------------------------|----------------------------------------|---|
| . Selection Data                                                 |          | el 3 Aerospace                 |                                    |                                        |   |
| atabase: Level 3 Acrospace                                       | Change   | er 5 Aerospace                 |                                    |                                        |   |
| elect from: Custom: MaterialUniverse                             |          | ) change database 🕢 first ster | DS                                 |                                        |   |
| eference: 🛛 Not set                                              | Set      | •                              |                                    |                                        |   |
| . Selection Stages                                               |          |                                |                                    |                                        |   |
| 🕉 Chart/Index 🦷 Limit 🛵 Tree                                     | 1        | . Select a table               | 2. Filter by :                     | subset                                 |   |
| _ • •                                                            |          | MaterialUniverse               | >                                  |                                        |   |
|                                                                  |          | ProcessUniverse                | 6.6. à                             |                                        |   |
|                                                                  |          | Reference                      |                                    |                                        |   |
| Results: 1629 of 1629 pass                                       |          | Deadlance                      | Custom Subset                      |                                        |   |
| how: Pass all Stages                                             | ~        | Producers                      |                                    |                                        |   |
| ank by: Alphabetical                                             | ~        | Shape                          | Selection table:                   | MaterialUniverse                       | ~ |
| A Name                                                           | <u>^</u> |                                | Initial subset:                    | Metals                                 |   |
| B 2024, T3 aluminum/aramid fibe                                  |          |                                | Inddi Subset.                      | Inclus .                               | ~ |
| B 2024, T3 aluminum/aramid fibe 7075, T761 aluminum/aramid fi    |          | 144 (DDC 42 D 1                | Selection attributes:              | Metals                                 | ~ |
| □ 📴 7075, T761 aluminum/aramid fi                                |          | MMPDS-13 Data                  |                                    |                                        |   |
| B Al(2009)-15%SiC(w) MMC pow                                     |          | MMPDS-13 Fasteners             | Click on checkboxes to             | include or exclude records and folders |   |
| Al(2009)-20%SiC(p) MMC pow                                       |          | WIWI D3-13 Tastellers          | > 🕅 🎦 Natural r                    | natoriale                              | ^ |
| ☐ 閏 Al(2024)-30%SiC(p) MMC pow<br>☐ 閏 Al(2124)-15%SiC(w) MMC pow |          | PMP-HDBK Design Data           | > C PCB lami                       |                                        | ^ |
| B Al(2124)-20%SiC(p) MMC pow                                     | -        |                                | > Cb land                          |                                        |   |
| Al(2618)-12%SiC(p) MMC pow                                       |          | PMP-HDBK Graphical Data        | > Magnetic m                       |                                        |   |
| B Al(6013)-15%SiC(w) MMC pow                                     |          |                                | ✓ ■ Magnetic m<br>✓ ■ ■ Metals and |                                        |   |
| ☐ B Al(606 1)-25%SiC(p) MMC pow<br>B Al(606 1)-55%SiC(p) MMC pow |          | MIL-HDBK-17 Test Data          | V V Ferrous                        | alloys                                 |   |
| ☐                                                                |          |                                | > V 🖾 Alloy s                      | taala                                  |   |
| Al(6091)-25%SiC(p) MMC pow                                       |          | MIL-HDBK-17 Graphical Data     | > V 🛄 Carbo                        |                                        |   |
| B Al(8009)-11%SiC(p) MMC pow                                     |          |                                |                                    |                                        |   |
| Al(8019)-12.5%SiC(p) MMC po                                      |          |                                | > 🔽 🛄 Cast i                       |                                        |   |
| B Al(8089)-20%SiC(p) MMC pow                                     |          |                                | > V Coate                          |                                        |   |
| ☐                                                                |          |                                |                                    | commercial purity                      |   |
| □ B Al(AMC217-xe, T4)-17%SiC(p)                                  |          |                                |                                    | alloy and high strength steels         |   |
| 🛛 🗟 Al-40%Al2O3(Nextel fiber), lo                                |          |                                | > 🔽 🛄 Stainle                      |                                        |   |
| 🗌 📙 Al-40%Al2O3(Nextel fiber), tr                                |          |                                | > 🔽 🛄 Tool s                       | teels                                  |   |
| 📄 🗟 Al-40%AlN(p)                                                 |          |                                | > 🔽 🚞 Non-ferr                     | ous                                    |   |
| B Al-47%SiC(f), 0/90/0/90                                        |          |                                | > 🔽 🚞 Other m                      | etals                                  |   |
| Al-47%SiC(f), longitudinal                                       |          |                                | > Precious                         | metal alloys                           |   |
| ☐                                                                |          |                                | > V Rare ear                       |                                        |   |
| □                                                                |          |                                | > V D Refracto                     |                                        |   |
| B Al-50%Al2O3(Altex fasern, f),                                  | ~        |                                |                                    | plastics, elastomers                   |   |
| Report                                                           |          |                                | Polymers:                          | dauca, cidstumers                      | * |
|                                                                  |          |                                |                                    |                                        |   |

جامعة الإمارات العربية المتحدة United Arab Emirates University

GE :Untitled - GRANTA EduPack 2020 - [Home]

比

Home Home

☆ File Edit View Select Tools Window Feature Request Help Browse Q Search

### 📲 Solver 🛱 Eco Audit 🖉 Synthesizer 🔲 Learn 💥 Tools 🔻 Chart/Select {o} Settings (?) Help ▼



### Selection Project ☆ Home × 1. Selection Data Level 3 Aerospace Change... Database: Level 3 Aerospace (a) change database 🕢 first steps Select from: Custom: MaterialUniverse Set ... Reference: 🐺 Not set 2. Selection Stages 2 Filter by subse 1. Select a table More information 💱 Chart/Index) 🍸 Limit 🗜 Tree X Chart Stage MaterialUniverse X-Axis Y-Axis Single or Advanced Property O Performance Index Finder What is a performance index? ProcessUniverse Database **Axis Property Definition** Video tutorials Reference nformation 3. Results: 1629 of 1629 pass -More resources Show: Pass all Stages V Producers Video Tutorials 🕑 Select the attribute that you wish to plot, or click the advanced button Rank by: Alphabetical V Shape ~ Name Advanced... Category: Mechanical properties 2024, T3 aluminum/aramid fibe... Structural Sections <All Alphabetical> 2024, T3 aluminum/aramid fibe... Attribute: General information V **Education Hub** Extra 7075, T761 aluminum/aramid fi... Composition overview MMPDS-13 Data Composition detail (metals, ceramics and glasses) 🗌 🛢 7075, T761 aluminum/aramid fi... **Axis Settings** Composition detail (polymers and natural materials) Al(2009)-15%SiC(w) MMC pow... Price MMPDS-13 Fasteners Al(2009)-20%SiC(p) MMC pow... Physical properties Axis Title: Mechanical properties Al(2024)-30%SiC(p) MMC pow... Impact & fracture properties PMP-HDBK Design Data Al(2124)-15%SiC(w) MMC pow... Thermal properties Absolute values Al(2124)-20%SiC(p) MMC pow... Electrical properties Al(2618)-12%SiC(p) MMC pow... Magnetic properties PMP-HDBK Graphical Data Logarithmic Optical, aesthetic and acoustic properties Al(6013)-15%SiC(w) MMC pow... Restricted substances risk indicators Autoscale Al(6061)-25%SiC(p) MMC pow... Critical materials risk MIL-HDBK-17 Test Data Al(6061)-55%SiC(p) MMC pow... Tool steels Absorption & permeability Al(6061)-70%SiC(p) MMC pow... Parameters Processing properties MIL-HDBK-17 Graphical Data Al(6091)-25%SiC(p) MMC pow... Durability Edit... Al(8009)-11%SiC(p) MMC pow... Corrosion resistance of metals Primary production energy, CO2 and water Al(8019)-12.5%SiC(p) MMC po... Project Defaults Processing energy, CO2 footprint & water Al(8089)-20%SiC(p) MMC pow... Recycling and end of life Al(AMC217-xa, T351)-17%SiC... Part cost estimator Al(AMC217-xa, T4)-17%SiC(p)... OK Cancel Help Al(AMC217-xe, T4)-17%SiC(p)... Al-40%Al2O3(Nextel fiber), lo... Al-40%Al2O3(Nextel fiber), tr... Al-40%AlN(p) Al-47%SiC(f), 0/90/0/90 Al-47%SiC(f), longitudinal Al-47%SiC(f), transverse Al-48%B(f), longitudinal Al-48%B(f), transverse Al-50%Al2O3(Altex fasern, f),... 4. Report Selection... Demparison... Ready

02

NUM へ に dッ) ENG 2:27 PM 9/27/2020 导 GE :Untitled - GRANTA EduPack 2020 - [Home]

比

Home Home

☆ File Edit View Select Tools Window Feature Request Help Browse Q Search

### 📲 Solver 🛱 Eco Audit 🖉 Synthesizer 🔲 Learn 💥 Tools 🔻 Chart/Select {o} Settings (?) Help ▼



### Selection Project ☆ Home × 1. Selection Data Level 3 Aerospace Change... Database: Level 3 Aerospace (a) change database 🕢 first steps Select from: Custom: MaterialUniverse Set .... Reference: 🐺 Not set 2. Selection Stages 2 Filtor by subse 1. Select a table More information 😵 Chart/Index 🛛 Limit 📴 Tree X Chart Stage MaterialUniverse X-Axis Y-Axis Single or Advanced Property O Performance Index Finder What is a performance index? ProcessUniverse Database **Axis Property Definition** Video tutorials Reference nformation 3. Results: 1629 of 1629 pass -More resources Show: Pass all Stages V Producers Video Tutorials 🕑 Select the attribute that you wish to plot, or click the advanced button Rank by: Alphabetical V Shape ~ Name Category: Mechanical properties V Advanced... 2024, T3 aluminum/aramid fibe... Structural Sections 2024, T3 aluminum/aramid fibe... Attribute: Hardness - Rockwell C **Education Hub** Extra 7075, T761 aluminum/aramid fi... MMPDS-13 Data Hardness - Rockwell C 🗌 🛢 7075, T761 aluminum/aramid fi... Hardness - Rockwell M **Axis Settings** Hardness - Rockwell R Al(2009)-15%SiC(w) MMC pow... MMPDS-13 Fasteners ardness - Shore A Al(2009)-20%SiC(p) MMC pow... Hardness - Shore D Axis Title: Al(2024)-30%SiC(p) MMC pow... Hardness - Vickers PMP-HDBK Design Data Al(2124)-15%SiC(w) MMC pow... Poisson's ratio Absolute values Radial shrinkage (green to oven-dry) Al(2124)-20%SiC(p) MMC pow... Rolling shear strength Al(2618)-12%SiC(p) MMC pow... PMP-HDBK Graphical Data Logarithmic Shape factor Al(6013)-15%SiC(w) MMC pow... Shear modulus Autoscale Shear modulus with temperature Al(6061)-25%SiC(p) MMC pow... MIL-HDBK-17 Test Data Shear strength Al(6061)-55%SiC(p) MMC pow... Shear strength with temperature Al(6061)-70%SiC(p) MMC pow... Parameters Specific stiffness MIL-HDBK-17 Graphical Data Specific strength Al(6091)-25%SiC(p) MMC pow... Edit... Tangent modulus Al(8009)-11%SiC(p) MMC pow... Tangential shrinkage (green to oven-dry) Al(8019)-12.5%SiC(p) MMC po... Tear strength Project Defaults Al(8089)-20%SiC(p) MMC pow... Tensile strength Tensile strength with temperature Al(AMC217-xa, T351)-17%SiC... Tensile stress at 100% strain Al(AMC217-xa, T4)-17%SiC(p)... Tensile stress at 300% strain Help Al(AMC217-xe, T4)-17%SiC(p)... True plastic stress-strain Ult bearing strength with temperature Al-40%Al2O3(Nextel fiber), lo... Volumetric shrinkage (green to oven-dry) Al-40%Al2O3(Nextel fiber), tr... Work to maximum strength Al-40%AlN(p) Yield bearing strength with temperature Yield strength (elastic limit) Al-47%SiC(f), 0/90/0/90 Yield strength with temperature Al-47%SiC(f), longitudinal Al-47%SiC(f), transverse Al-48%B(f), longitudinal Al-48%B(f), transverse Al-50%Al2O3(Altex fasern, f),... 4. Report Selection... Demparison... Ready NUM

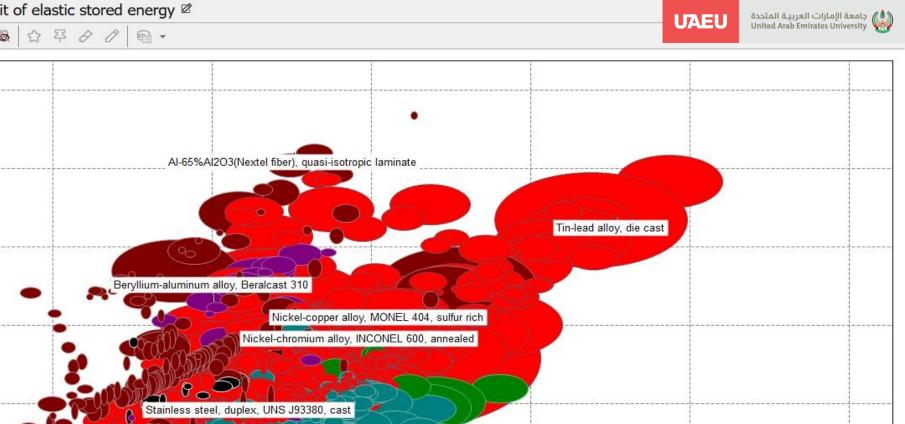
0 Ξi GE

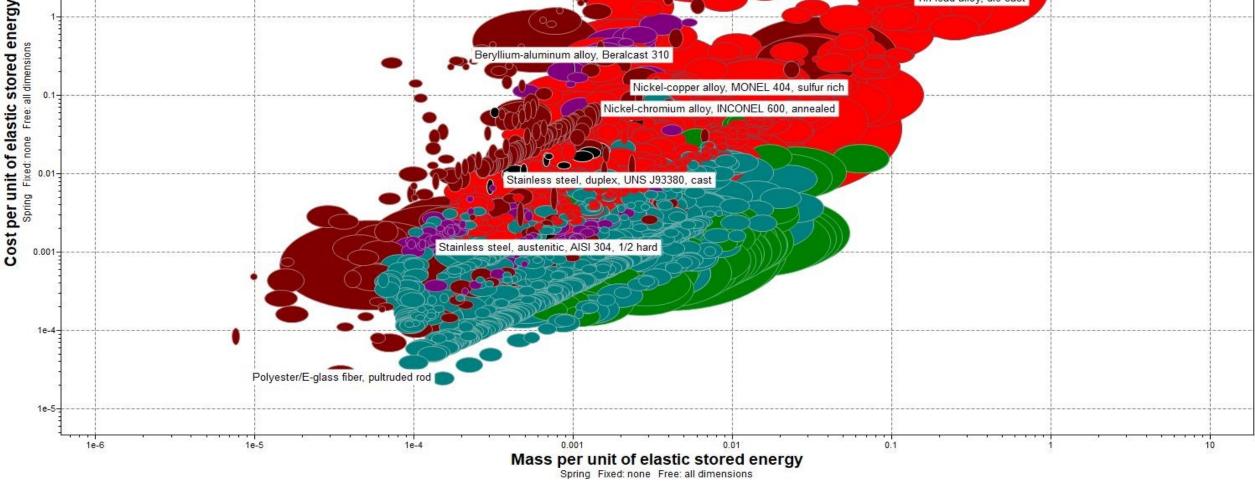
0

| Single or Advanced Prop       | erty                                   |                                                              | What is a performance index |
|-------------------------------|----------------------------------------|--------------------------------------------------------------|-----------------------------|
| Component Definition          | L .                                    |                                                              |                             |
| Function and Loading:         | Spring                                 | Component Not<br>All types of sprin<br>, Coil, helical, lead |                             |
| Free Variables:               | all dimensions                         | -<br>- v                                                     | Performance Index           |
| Fixed Variables:              | none                                   | ×                                                            | E. ho                       |
| Limiting Constraint:          | elastic stored energy                  |                                                              | $rac{E. ho}{\sigma_y^2}$   |
| Optimize:                     | mass                                   | v                                                            | Cyclic loading symbols      |
| Axis Settings                 |                                        |                                                              |                             |
| Axis Title:                   | Mass per unit of elastic stored energy |                                                              |                             |
| Absolute values               | Relative values                        |                                                              |                             |
| Logarithmic                   | 🔿 Linear                               |                                                              |                             |
| <ul> <li>Autoscale</li> </ul> | ○ Set 1                                | 100                                                          |                             |

## Performance Index

- Developed by Prof. Mike Ashby
- PI is the ratio of parameters of material used to optimize and maximize the performance of a component based on objective, specific function and limiting constraint of the design
- Design Factors
  - The main variable that needed to be optimized is defined as the objective (minimizing cost or mass)
  - Function is defined as load condition and basic geometry (a column in compression)
  - Limiting constraint is defined as the criteria that is to be met to avoid the failure of a component
  - The geometry parameter that can be varied with the choice of material is called free variable (thickness of a plate)

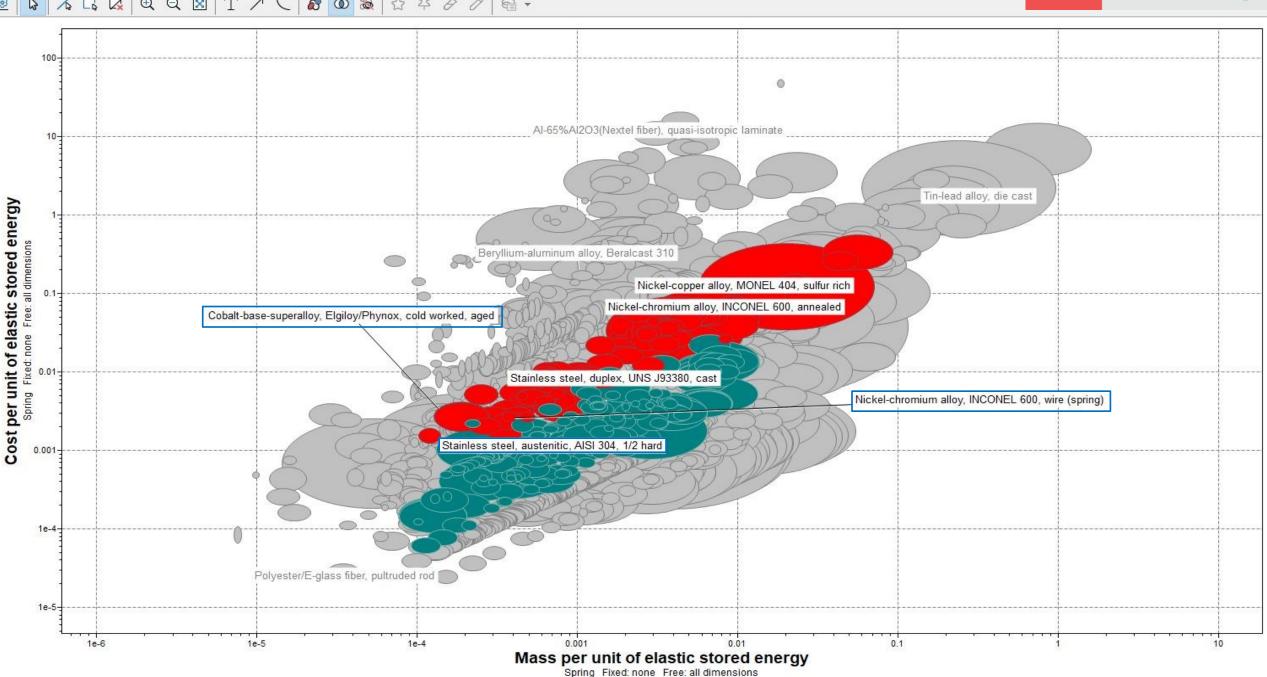

☆ File Edit View Select Tools Window Feature Request Help


### Browse Q Search 📲 Solver 🛱 Eco Audit 🔗 Synthesizer 🗍 Learn 💥 Tools 🕶 Settings (?) Help ▼ Home Home Chart/Select Selection Project ☆ Home × 1. Selection Data Level 3 Aerospace Change... Database: Level 3 Aerospace (a) change database 🕢 first steps Select from: Custom: MaterialUniverse Set... Reference: 🐺 Not set 2. Selection Stages 2 Filter by subset 1. Select a table More information 😵 Chart/Index 🛛 Limit 📴 Tree X Chart Stage MaterialUniverse X-Axis Y-Axis Performance Index Finder What is a performance index? O Single or Advanced Property ProcessUniverse Database **Component Definition** Video tutorials Reference nformation 3. Results: 1988 of 1988 pass -Component Notes: Function and Loading: More resources Show: Pass all Stages V Producers All types of spring: Rank by: Alphabetical V Shape Coil, helical, leaf, linear, torsion... ~ Name 2024, T3 aluminum/aramid fibe... Structural Sections 2024, T3 aluminum/aramid fibe... Spring **Education Hub** Extra 7075, T761 aluminum/aramid fi... MMPDS-13 Data 7075, T761 aluminum/aramid fi... Free Variables: Al(2009)-15%SiC(w) MMC pow... MMPDS-13 Fasteners Al(2009)-20%SiC(p) MMC pow... Fixed Variables: Al(2024)-30%SiC(p) MMC pow... Al(2124)-15%SiC(w) MMC pow... PMP-HDBK Design Data Limiting Constraint: Al(2124)-20%SiC(p) MMC pow... Elastic hinge with small Elastic hinge with large Elastic hinge with axial load Al(2618)-12%SiC(p) MMC pow... Optimize: PMP-HDBK Graphical Data deformation deformation Al(6013)-15%SiC(w) MMC pow... **Axis Settings** Al(6061)-25%SiC(p) MMC pow... MIL-HDBK-17 Test Data Al(6061)-55%SiC(p) MMC pow... Axis Title: Al(6061)-70%SiC(p) MMC pow... MIL-HDBK-17 Graphical Data Absolute values Al(6091)-25%SiC(p) MMC pow... Al(8009)-11%SiC(p) MMC pow... Logarithmic Al(8019)-12.5%SiC(p) MMC po... Autoscale Al(8089)-20%SiC(p) MMC pow... Spring Al(AMC217-xa, T351)-17%SiC... Al(AMC217-xa, T4)-17%SiC(p)... Abrasion resistance Al(AMC217-xe, T4)-17%SiC(p)... Al-40%Al2O3(Nextel fiber), lo... Al-40%Al2O3(Nextel fiber), tr... Al-40%AlN(p) Al-47%SiC(f), 0/90/0/90 Al-47%SiC(f), longitudinal Al-47%SiC(f), transverse Blunt contact - static load Blunt contact - sliding load Sharp contact - static load Al-48%B(f), longitudinal Al-48%B(f), transverse (A) Thermal Al-50%Al2O3(Altex fasern, f),... 4. Report Demparison... Selection... Ready NUM へ ED (小)) ENG 3:46 PM 9/27/2020 😽 Ľ. GE 0 02 Thermal insulation, transitional Thermal insulation, cyclic heating Thermal insulation, steady state

Cost per unit of elastic stored energy vs. Mass per unit of elastic stored energy ₪

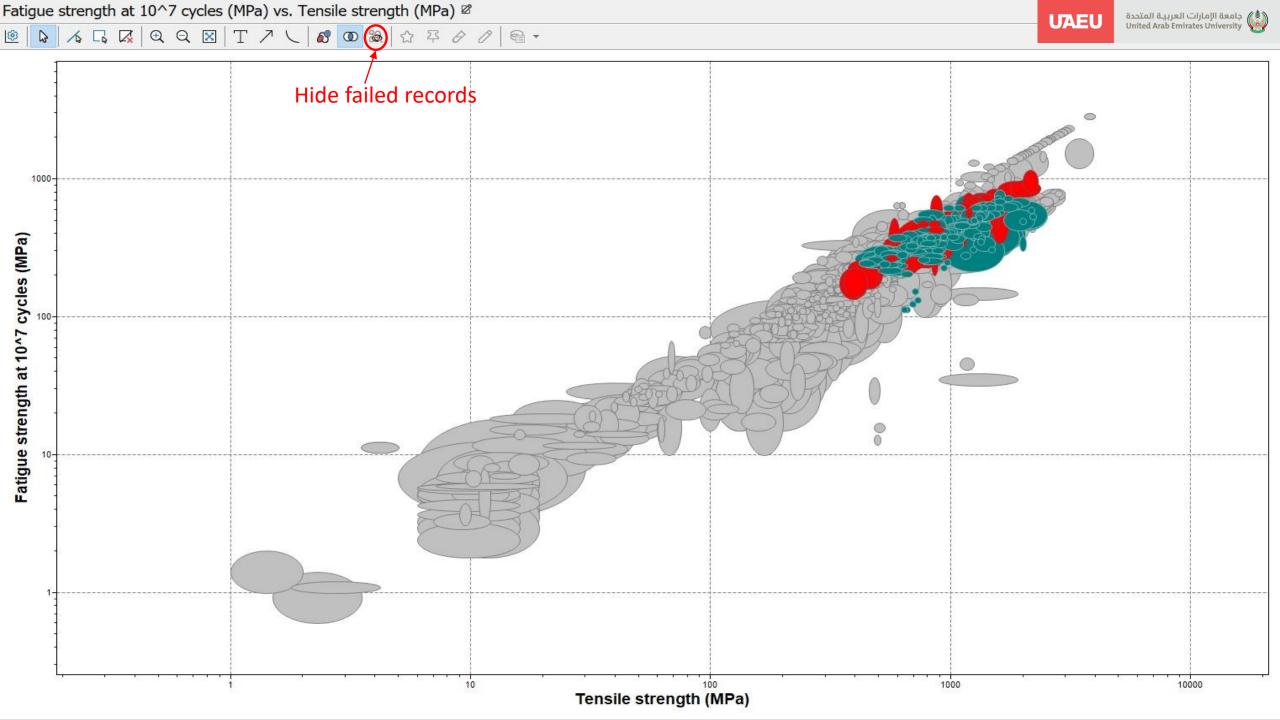
### 

100

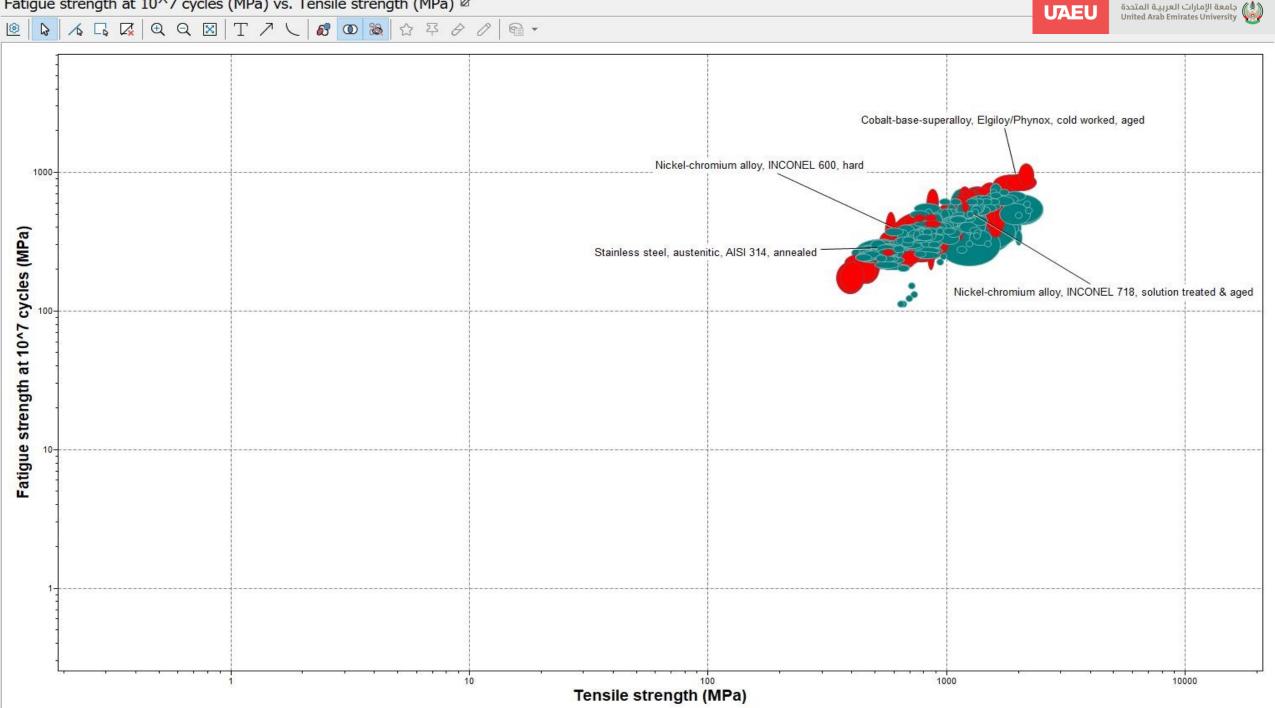





| Selection Project ×                                                                                     | G Home                                              |                |         |               |      |                                                                    |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------|---------|---------------|------|--------------------------------------------------------------------|
| 1. Selection Data 🔹                                                                                     | Limit 🖻                                             |                |         |               | UAEU | جامعة الإمارات العربيـة المتحدة<br>United Arab Emirates University |
| Database: Level 3 Aerospace Change                                                                      |                                                     |                |         |               |      | •                                                                  |
| Select from: Custom: MaterialUniverse V                                                                 | Settings Apply Clear                                |                |         |               | <br> | Video Tutorials 🕑                                                  |
| Reference: 🐺 Not set Set                                                                                | Can't find the property you are looking for?        |                |         |               |      | ^                                                                  |
| 2. Selection Stages 🗸 🗸                                                                                 | General information                                 |                |         |               |      |                                                                    |
| Chart/Index Limit 🖓 Tree                                                                                | Composition overview                                |                |         |               |      |                                                                    |
| ☑ ☑ Stage 1: Cost per unit of elastic stored energy vs. Mass per unit of elas                           | Composition detail (metals, ceramics and glasses)   |                |         |               |      |                                                                    |
| ☑ ▼ Stage 2: Limit                                                                                      | Composition detail (polymers and natural materials) |                |         |               |      |                                                                    |
|                                                                                                         | > Price                                             |                |         |               |      |                                                                    |
|                                                                                                         | Physical properties                                 |                |         |               |      |                                                                    |
| < >>                                                                                                    |                                                     |                |         |               |      |                                                                    |
| 3. Results: 1625 of 1629 pass 👻                                                                         | Mechanical properties                               |                |         |               |      |                                                                    |
| Show: Pass all Stages                                                                                   | Exist                                               |                | Maximum | -             |      |                                                                    |
| Rank by: Alphabetical V                                                                                 | Young's modulus                                     | 置 25           | 32      | 10^6 psi      |      |                                                                    |
| رق Name                                                                                                 | Young's modulus with temperature                    |                |         | 10^6 psi      |      |                                                                    |
| D 2024, T3 aluminum/aramid fibe                                                                         | Specific stiffness                                  | B              |         | lbf.ft/lb     |      |                                                                    |
| 2024, T3 aluminum/aramid fibe                                                                           | Yield strength (elastic limit)                      | B              |         | -<br>ksi      |      |                                                                    |
| B             7075, T761 aluminum/aramid fi                 B             7075, T761 aluminum/aramid fi |                                                     |                | -       |               |      |                                                                    |
| Al(2009)-15%SiC(w) MMC pow                                                                              | Yield strength with temperature                     |                |         | ksi           |      |                                                                    |
| Al(2009)-20%SiC(p) MMC pow                                                                              | Tensile strength                                    | <b></b> 日 1300 | 2200    | ksi           |      |                                                                    |
| Al(2024)-30%SiC(p) MMC pow                                                                              | Tensile stress at 100% strain                       | E              |         | ksi           |      |                                                                    |
| Al(2124)-15%SiC(w) MMC pow                                                                              |                                                     |                | -       |               |      |                                                                    |
| □ B AI(2124)-20%SiC(p) MMC pow<br>□ B AI(2618)-12%SiC(p) MMC pow                                        | Tensile stress at 300% strain                       |                |         | ksi           |      |                                                                    |
| □                                                                                                       | Tensile strength with temperature                   | le             |         | ksi           |      |                                                                    |
| Al(6061)-25%SiC(p) MMC pow                                                                              | Specific strength                                   | E              |         | lbf.ft/lb     |      |                                                                    |
| Al(6061)-55%SiC(p) MMC pow                                                                              |                                                     |                | - I     |               |      |                                                                    |
| Al(6061)-70%SiC(p) MMC pow                                                                              | Elongation                                          |                |         | % strain      |      |                                                                    |
| □ B Al(6091)-25%SiC(p) MMC pow<br>□ B Al(8009)-11%SiC(p) MMC pow                                        | Elongation at yield                                 |                |         | % strain      |      |                                                                    |
| □ ■ Al(8019)-11./Sic(p) MMC po                                                                          | Tangent modulus                                     | 8              | -       | ksi           |      |                                                                    |
| Al(8089)-20%SiC(p) MMC pow                                                                              | True plastic stress-strain                          |                | -       | ksi           |      |                                                                    |
| B Al(AMC217-xa, T351)-17%SiC                                                                            |                                                     |                |         |               |      |                                                                    |
| □ B Al(AMC217-xa, T4)-17%SiC(p)<br>□ B Al(AMC217-xe, T4)-17%SiC(p)                                      | Compressive modulus                                 |                | 1       | 10^6 psi      |      |                                                                    |
| □ ■ Al(AMC217-xe, 14)-17%SiC(p)<br>■ ■ Al-40%Al2O3(Nextel fiber), Io                                    | Comp. Young's modulus with temperature              | 8              |         | 10^6 psi      |      |                                                                    |
| Al-40%Al2O3(Nextel fiber), tr                                                                           | Compressive strength                                | LE             |         | ksi           |      |                                                                    |
| □ B AI-40%AIN(p)<br>□ B AI-47%SiC(f), 0/90/0/90                                                         | Compression strength with temperature               | - LE -         | ·       | - ksi         |      |                                                                    |
| B Al-47%SiC(f), longitudinal                                                                            |                                                     |                |         | -<br>ksi      |      |                                                                    |
| Al-47%SiC(f), transverse                                                                                | Compressive stress @ 25% strain                     |                |         | _             |      |                                                                    |
| B Al-48%B(f), longitudinal                                                                              | Compressive stress @ 50% strain                     |                |         | ksi           |      |                                                                    |
| □ B AI-48%B(f), transverse<br>□ B AI-50%AI2O3(Altex fasern, f), ∨                                       | Flexural modulus                                    | 8              |         | -<br>10^6 psi |      |                                                                    |
| 4. Report                                                                                               | Flexural strength (modulus of rupture)              | LE             | -       | - ksi         |      |                                                                    |
|                                                                                                         |                                                     |                | - i     |               |      |                                                                    |
| 4 Comparison                                                                                            | Shear modulus                                       |                |         | 10^6 psi<br>  |      | ~                                                                  |


Cost per unit of elastic stored energy vs. Mass per unit of elastic stored energy ∅

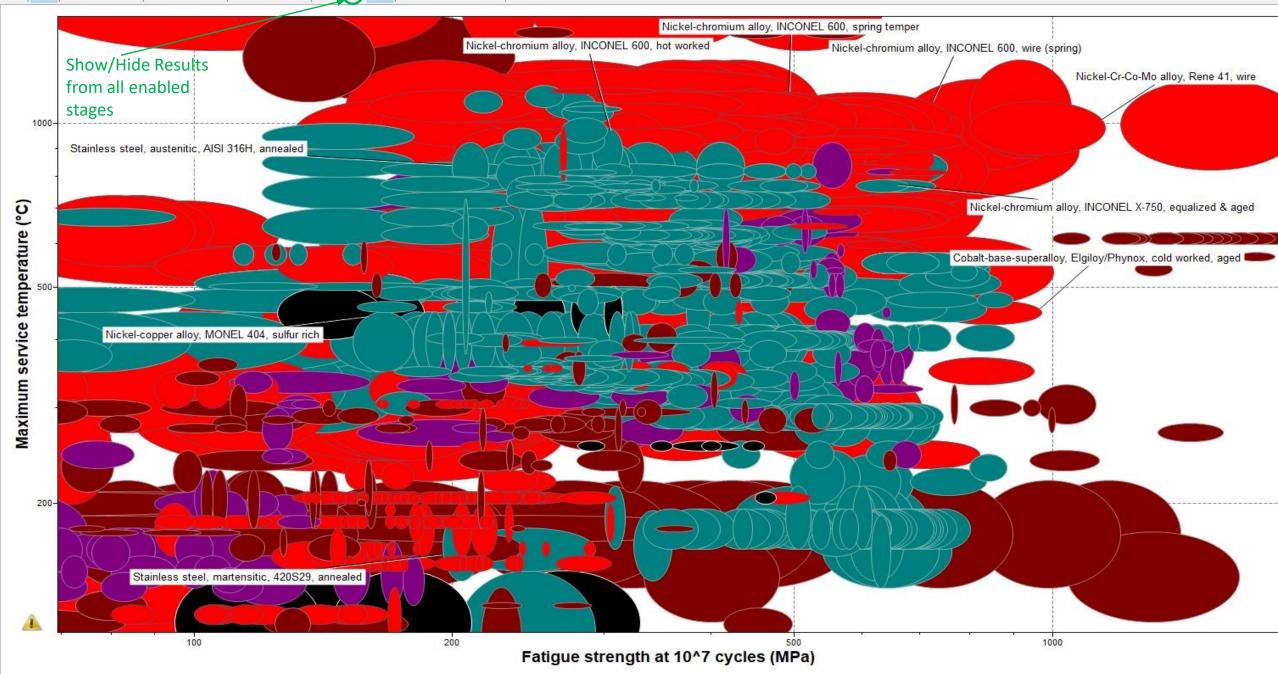
### 6



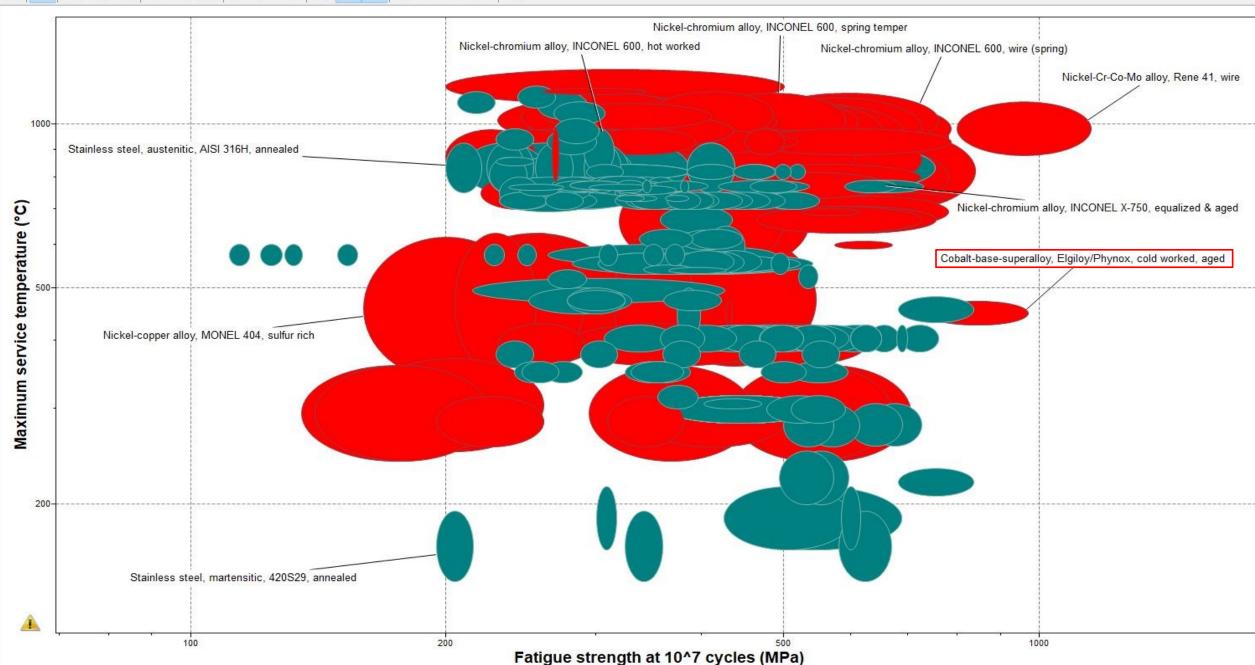

جامعة الإمارات العربية المتحدة United Arab Emirates University

| Selection Project ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | home M Stage 1 ▼ Stage 2 ×                        |                                       |             |      |                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|-------------|------|--------------------------------------------------------------------|
| 1. Selection Data 👻                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit 🖻                                           |                                       |             | UAEU | جامعة الإمارات العربيـة المتحدة<br>United Arab Emirates University |
| Database: Level 3 Aerospace Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                                       |             |      |                                                                    |
| Select from: Custom: MaterialUniverse ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Settings Apply Clear                              |                                       |             |      | <u>Video Tutorials</u>                                             |
| Reference: 🗸 Not set Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Can't find the property you are looking for?      |                                       |             |      | ^                                                                  |
| 2. Selection Stages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | General information                               |                                       |             |      |                                                                    |
| ∑ Chart/Index ∀ Limit L Tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Composition overview                              |                                       |             |      |                                                                    |
| 🗹 🖄 Stage 1: Cost per unit of elastic stored energy vs. Mass per unit of elas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Composition detail (metals, ceramics and glasses) |                                       |             |      |                                                                    |
| ✓ Y Stage 2: Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Composition detail (polymers and natural materia  | ls)                                   |             |      |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ▶ Price                                           |                                       |             |      |                                                                    |
| < >>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Physical properties                               |                                       |             |      |                                                                    |
| 3. Results: 1625 of 1629 pass 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ Mechanical properties                           |                                       |             |      |                                                                    |
| Show: Pass all Stages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   | Exists Minimum                        | Maximum     |      |                                                                    |
| Rank by: Alphabetical V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Young's modulus                                   | 昌 25                                  | 32 10^6 psi |      |                                                                    |
| Paralel Contraction of Contraction o |                                                   |                                       |             |      |                                                                    |
| ₫ <mark>0</mark> Name ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Young's modulus with temperature                  |                                       | 10^6 psi    |      |                                                                    |
| 🔲 📴 2024, T3 aluminum/aramid fibe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Specific stiffness                                |                                       | lbf.ft/lb   |      |                                                                    |
| B 2024, T3 aluminum/aramid fibe             B 7075, T761 aluminum/aramid fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yield strength (elastic limit)                    | L2                                    | ksi         |      |                                                                    |
| B 7075, 1761 aluminum/aramid i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vield strength with temperature                   |                                       | ksi         |      |                                                                    |
| □ B Al(2009)-15%SiC(w) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                       |             |      |                                                                    |
| Al(2009)-20%SiC(p) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tensile strength                                  | 書  1300                               | 2200 ksi    |      |                                                                    |
| Al(2024)-30%SiC(p) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tensile stress at 100% strain                     | LE                                    | ksi         |      |                                                                    |
| □ B Al(2124)-15%SiC(w) MMC pow<br>□ B Al(2124)-20%SiC(p) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tensile stress at 300% strain                     |                                       | ksi         |      |                                                                    |
| B Al(2124)-20%SIC(D) MMC pow     B Al(2618)-12%SIC(D) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tensile stress at 500% strain                     | B                                     | KSI         |      |                                                                    |
| □ B Al(6013)-15%SiC(w) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tensile strength with temperature                 |                                       | ksi         |      |                                                                    |
| Al(6061)-25%SiC(p) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Specific strength                                 | L2                                    | lbf.ft/lb   |      |                                                                    |
| Al(606 1)-55%SiC(p) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elongation                                        | Le                                    | % strain    |      |                                                                    |
| □ B Al(6061)-70%SiC(p) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Elongation                                        |                                       | /o strain   |      |                                                                    |
| Al(6091)-25%SiC(p) MMC pow     B Al(8009)-11%SiC(p) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Elongation at yield                               | 旦                                     | % strain    |      |                                                                    |
| □ B Al(8019)-12.5%SiC(p) MMC po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tangent modulus                                   | <u></u> 国                             | ksi         |      |                                                                    |
| Al(8089)-20%SiC(p) MMC pow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | True plastic stress-strain                        |                                       | ksi         |      |                                                                    |
| Al(AMC217-xa, T351)-17%SiC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   | · · · · · · · · · · · · · · · · · · · |             |      |                                                                    |
| □ B Al(AMC217-xa, T4)-17%SiC(p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compressive modulus                               | 国                                     | 10^6 psi    |      |                                                                    |
| B         Al(AMC217-xe, T4)-17%SiC(p)           B         Al-40%Al2O3(Nextel fiber), lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Comp. Young's modulus with temperature            |                                       | 10^6 psi    |      |                                                                    |
| Al-40%Al2O3(Nextel fiber), tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Compressive strength                              |                                       | ksi         |      |                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compression strength with temperature             |                                       | ksi         |      |                                                                    |
| BI-47%SiC(f), 0/90/0/90     BI-47%SiC(f), longitudinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                       |             |      |                                                                    |
| B Al-47%SiC(f), transverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Compressive stress @ 25% strain                   | La                                    | ksi         |      |                                                                    |
| Al-48%B(f), longitudinal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Compressive stress @ 50% strain                   | L2                                    | ksi         |      |                                                                    |
| Al-48%B(f), transverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flexural modulus                                  | <br>                                  | 10^6 psi    |      |                                                                    |
| B Al-50%Al2O3(Altex fasern, f), 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                       |             |      |                                                                    |
| 4. Report 🔹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flexural strength (modulus of rupture)            | LE                                    | ksi         |      |                                                                    |
| 2 Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Shear modulus                                     | _ E                                   | 10^6 psi    |      | •                                                                  |

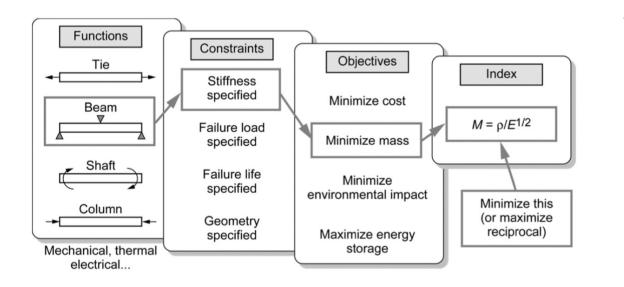








Maximum service temperature (°C) vs. Fatigue strength at 10^7 cycles (MPa) ☑

### 






Maximum service temperature (°C) vs. Fatigue strength at 10^7 cycles (MPa) ☑



جامعة الإمارات العربية المتحدة United Arab Emirates University



## Review on Performance Indices

- It has been seen that there are four main design parameters involved
- It can be expressed as P = f<sub>1</sub>(F). f<sub>2</sub>(G) .f<sub>3</sub>(M); G
   = Geometry, M = properties of material and F = functional requirement
- The product f<sub>1</sub>(F). f<sub>2</sub>(G) is defined as the coefficient of structural efficiency where as f<sub>3</sub>(M) is the coefficient of material efficiency
- Minimizing  $f_3(M)$ , the overall performance index could be maximized or minimized.

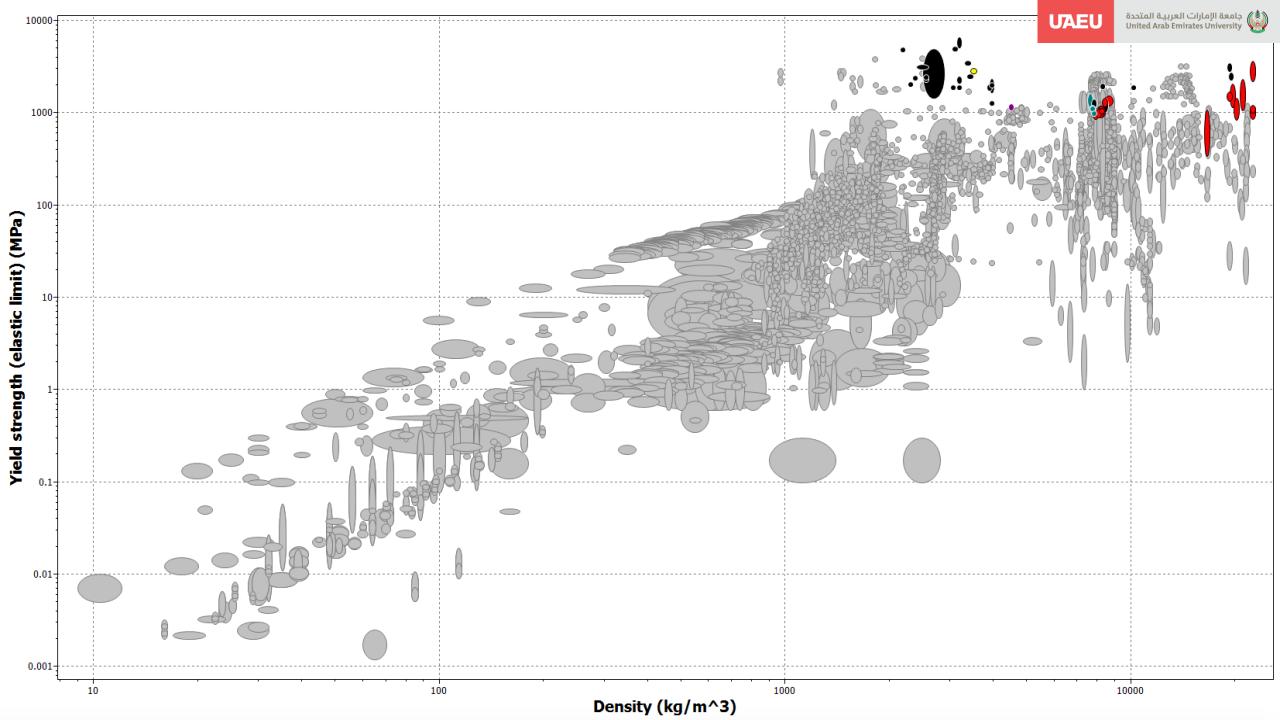


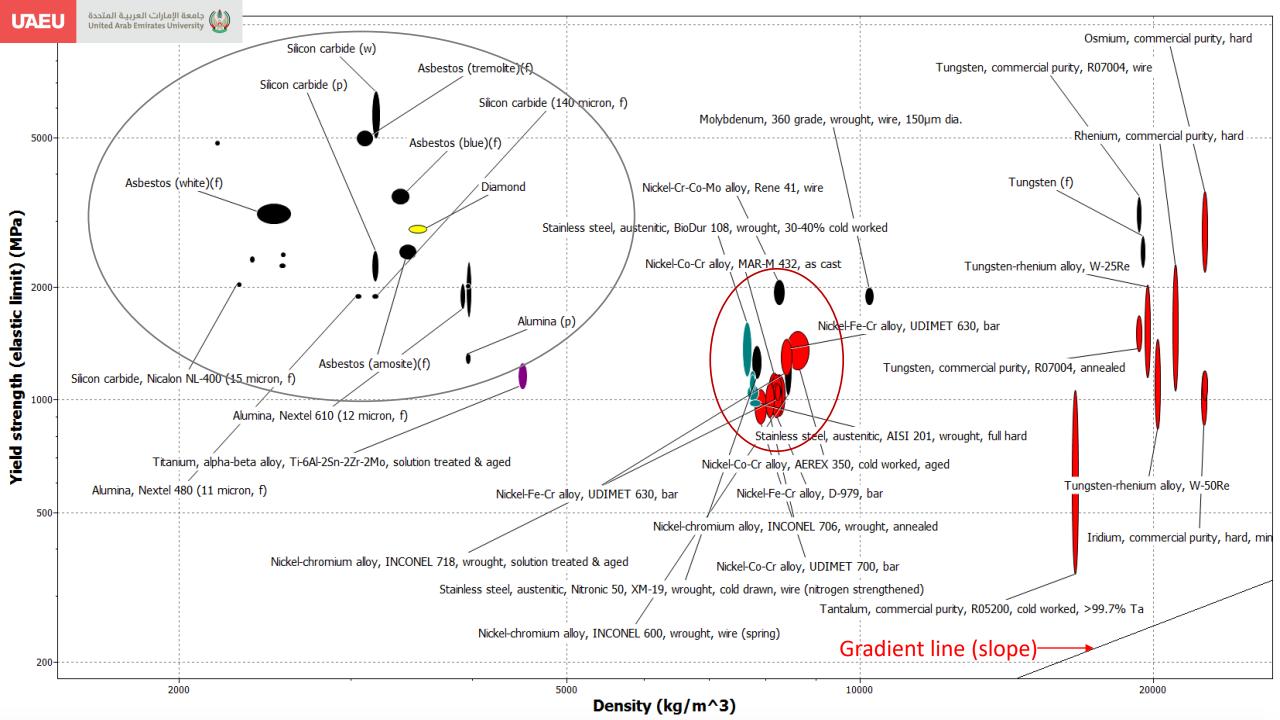
## Understanding the performance index

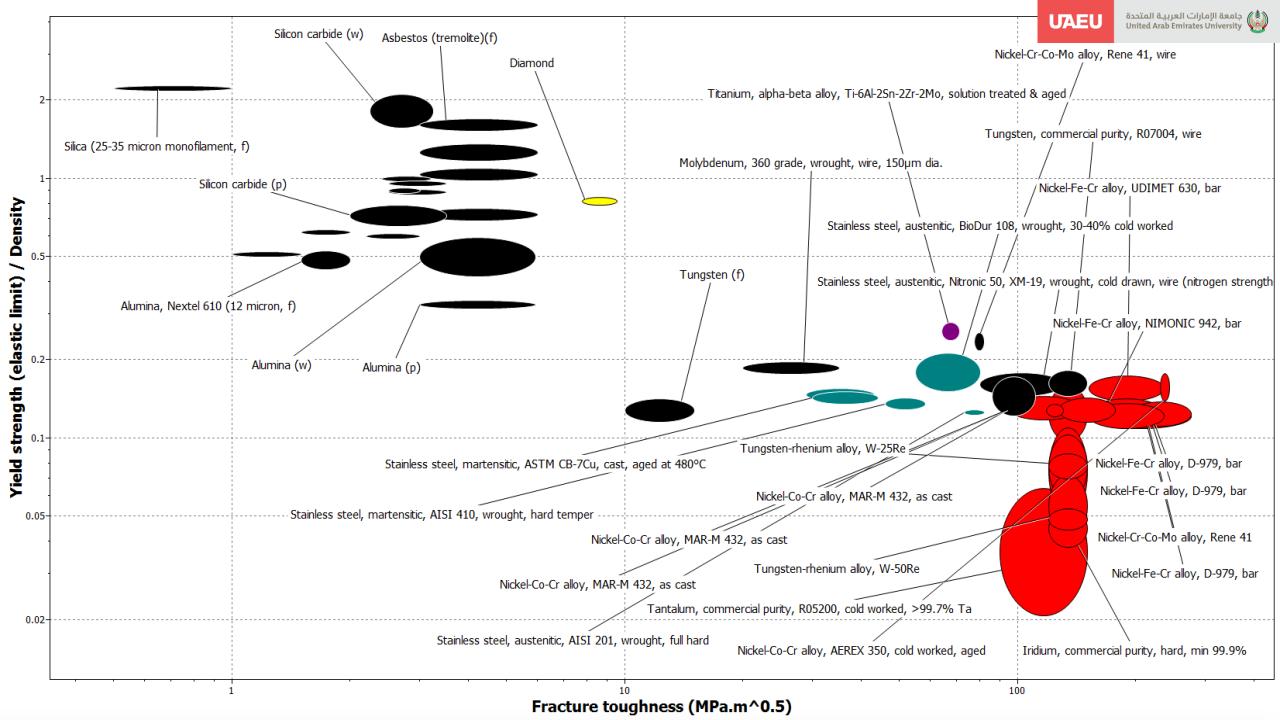
- Focusing on High Pressure Turbine Disk of an aircraft engine
- Understand the function: Similar to a flywheel which generates KE by the rotational forces and transfer this energy to the mechanical energy which in-turn rotates the shaft
- Define the constraints: Fixed outer radius, and the material should not fracture and have enough toughness to resist the initiation of crack
- Objective: Maximize the KE per unit mass
- Free variables: Choice of materials

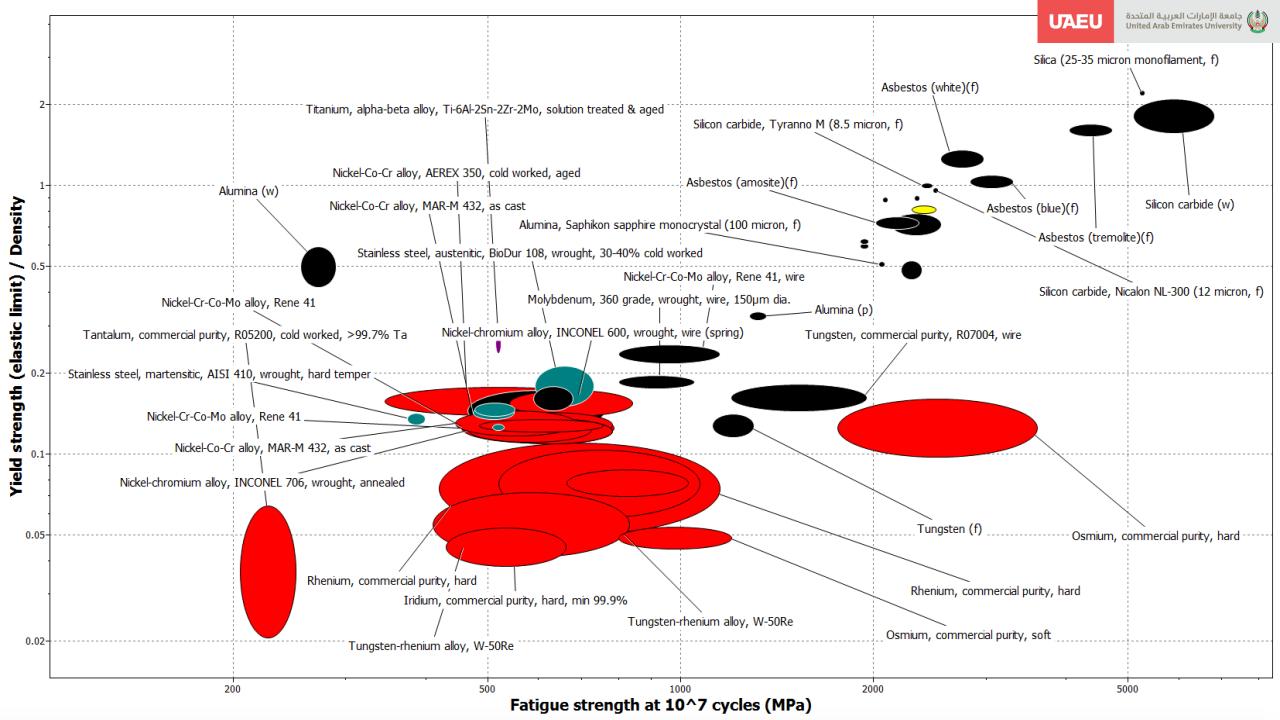


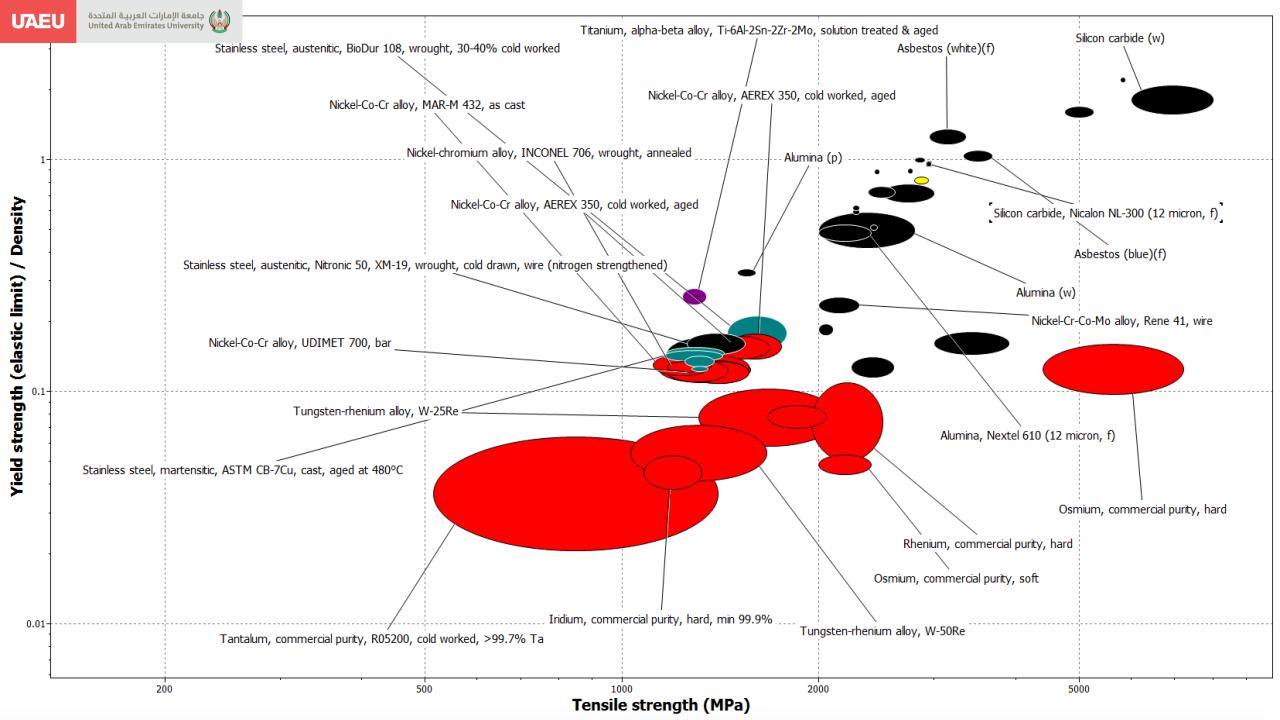
## Derivation for selecting the gradient line

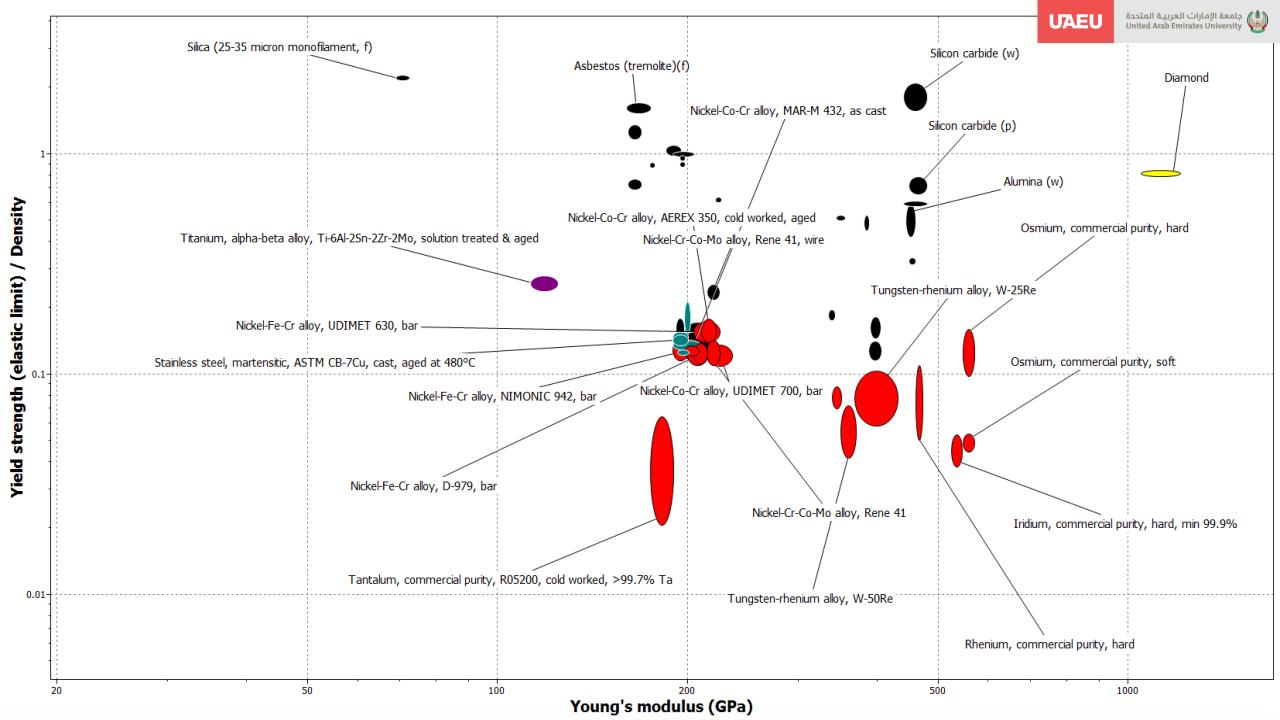

- Energy stored in a rotating disk is given by  $U = \frac{1}{2}J\omega^2$ , where  $\omega$  is the angular velocity and J is the polar moment of inertia
- J can be defined as  $J = \frac{\pi}{2}\rho R^4 t$ , where  $\rho$ , is the material density, R is the disk radius and t is the disk thickness
- $\Rightarrow U = \frac{\pi}{4} \rho R^4 t \omega^2$
- Next, we define the mass of disk and can be expressed as,  $m = \pi \rho R^2 t$
- Focusing on the objective which is to maximize the KE per unit, it can be expressed as,  $\frac{U}{m} = \frac{1}{4}R^2\omega^2$
- The increase in rotational speed of the turbine disk results in the increased energy generation along with its centrifugal force and hence the max principal stress generated can be written as  $\sigma_{max} = \left(\frac{3+\nu}{8}\right)\rho R^2 \omega^2$ , where  $\nu$ , is the Poisson's ratio,  $\approx \frac{1}{3}$  for solids.
- This maximum principle stress should not exceed the yield or failure strength  $\sigma_y$  with a safety factor, S. This will create an upper limit to the disc radius R and angular velocity  $\omega$  which are the free variables
- Rearranging the equations we get;  $\frac{U}{m} = \frac{1}{2} \left( \frac{\sigma_y}{\rho} \right)$
- This shows that the best material for HPT Disk are those with high values of the material index  $M = \frac{\sigma_y}{\rho}$  (kJ/kg)
- Now the gradient can be calculated taking the log of each side which gives  $log\sigma_y = log\rho + logM$ , which is like the equation of line, y = mx + c and hence the gradient (slope) for this material selection will be 1

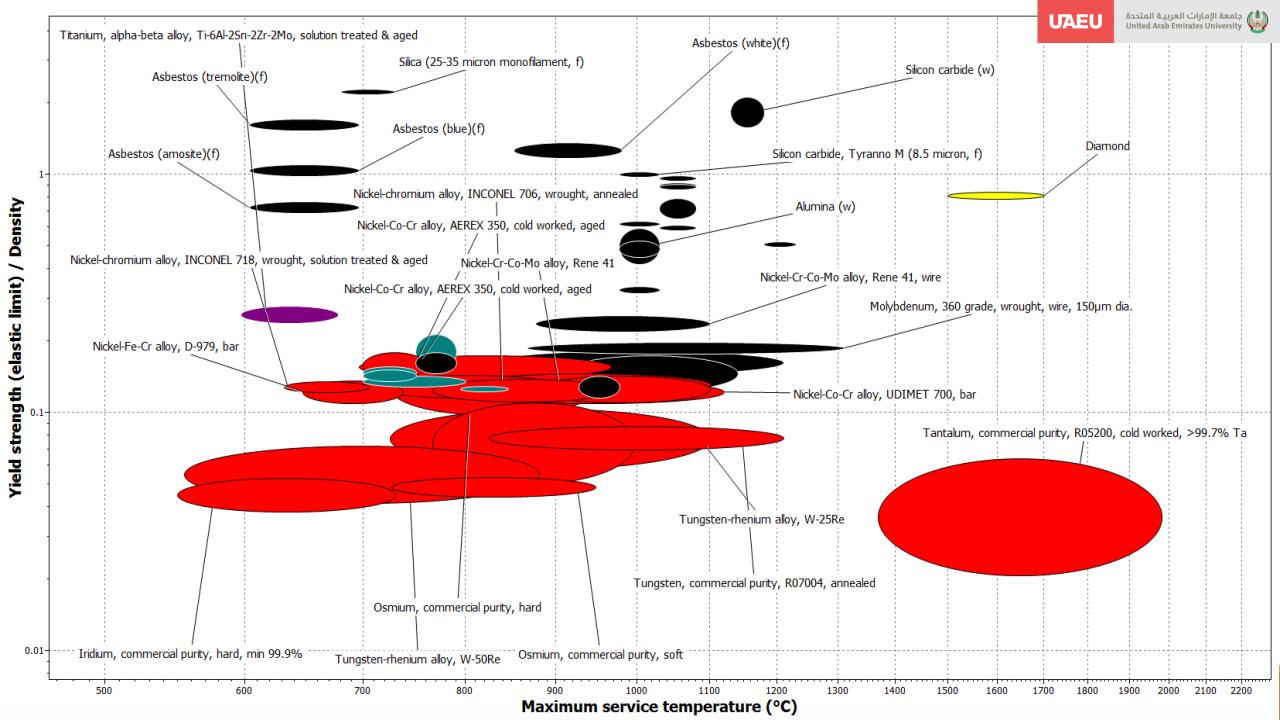


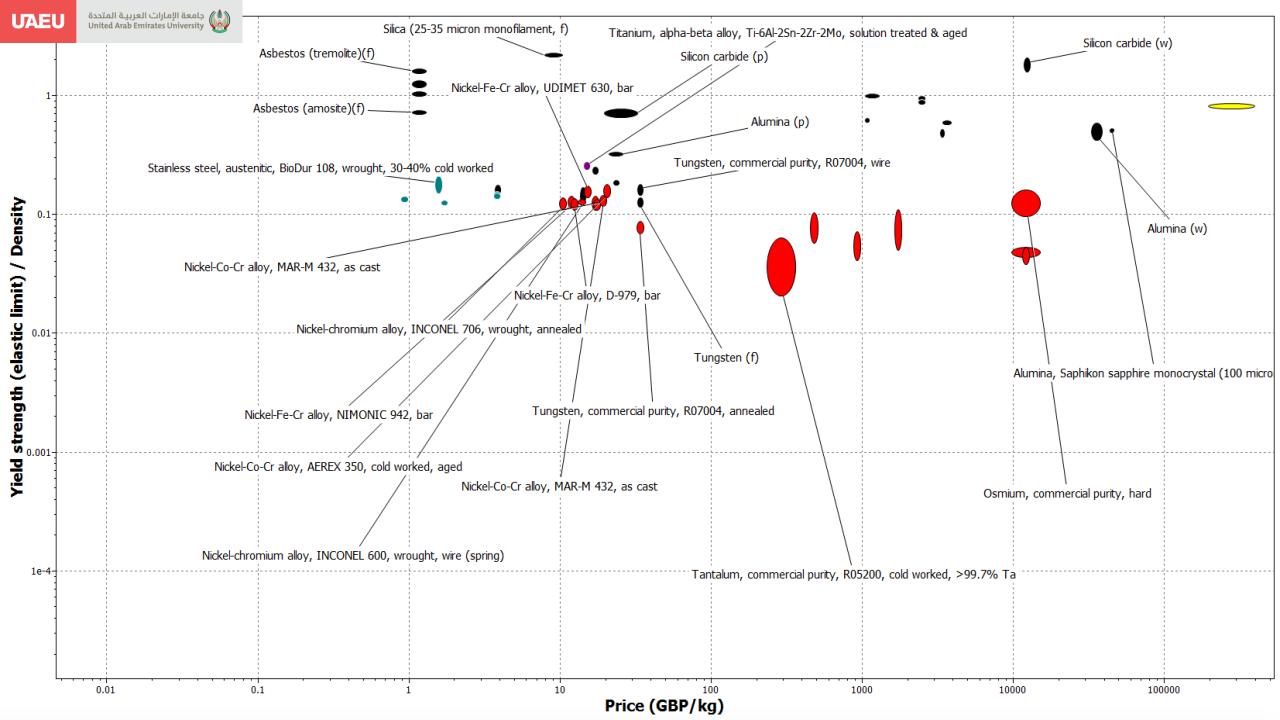


| Properties Apply Clear                    |             |         |            |
|-------------------------------------------|-------------|---------|------------|
| Physical properties                       |             |         |            |
| <ul> <li>Mechanical properties</li> </ul> |             |         |            |
|                                           | Minimum     | Maximum |            |
| Young's modulus                           |             |         | GPa        |
| Yield strength (elastic limit)            | <b>I000</b> |         | MPa        |
| ensile strength                           | 1300        |         | MPa        |
| Elongation                                |             |         | % strain   |
| Compressive strength                      |             |         | MPa        |
| Flexural modulus                          |             |         | GPa        |
| Flexural strength (modulus of rupture)    |             |         | MPa        |
| Shear modulus                             |             |         | GPa        |
| Bulk modulus                              |             |         | GPa        |
| Poisson's ratio                           |             |         |            |
| Shape factor                              |             |         |            |
| Hardness - Vickers                        |             |         | HV         |
| Fatigue strength at 10^7 cycles           |             |         | MPa        |
| Mechanical loss coefficient (tan delta)   |             |         |            |
| Impact & fracture properties              |             |         |            |
| <ul> <li>Thermal properties</li> </ul>    |             |         |            |
|                                           | Minimum     | Maximum |            |
| Melting point                             |             |         | °C         |
| Glass temperature                         |             |         | °C         |
| Maximum service temperature               | 650         |         | °C         |
| Minimum service temperature               |             |         | °C         |
| Thermal conductivity                      |             |         | W/m.°C     |
| Specific heat capacity                    |             |         | J/kg.°C    |
| Thermal expansion coefficient             |             |         | µstrain/°C |
| Electrical properties                     |             |         |            |


## Selection of materials


- § Before selecting the materials, we should know what are the primary minimal conditions that should be considered
- § The operating temperature of the disk will be between  $200^{\circ}$ C  $300^{\circ}$ Cat the bore to around  $650^{\circ}$ C at the rim
- § The rotation speed will be more than 10,000rpm and hence the mechanical stress could reach around 1000MPa at the time of takeoff
- § Tensile strength close to 1200-1300MPa
- § Yield strength close to 1000MPa
- § Highly ductile with high fracture toughness to improve the defect tolerance and prevent fracture
- § High creep resistance is another property to be considered to avoid creep strain at the outer rim














### **Material Properties**

|                                                                                                                                                                                                                                                                                                                                                                                                   | lov/Phynox cold y                                                                                                                    | vorked.                                                             | age                                                | ed                                                           |                       |              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|-----------------------|--------------|--|
| Cobalt-base-superalloy, Elgi                                                                                                                                                                                                                                                                                                                                                                      | v                                                                                                                                    | IN Show                                                             | w/Hid                                              |                                                              | Find Similar          | -            |  |
| Metals and alloys > Non-ferrous > 🛄 Co                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |                                                                     |                                                    | Ţ.                                                           |                       |              |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                 | bait > Cobait-base superali                                                                                                          | oy > wrou                                                           | ignt :                                             | Elgiloy/                                                     | Pnynox >              |              |  |
| General information                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                      |                                                                     |                                                    |                                                              |                       |              |  |
| Designation (i)                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                     |                                                    |                                                              |                       |              |  |
| Cobalt-base-superalloy, Elgiloy/Phynox                                                                                                                                                                                                                                                                                                                                                            | t, cold worked, aged                                                                                                                 |                                                                     |                                                    |                                                              |                       |              |  |
| Condition                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                    | Aged                                                                |                                                    |                                                              |                       |              |  |
| UNS number                                                                                                                                                                                                                                                                                                                                                                                        | <b>(</b> )                                                                                                                           | R30003                                                              | , R30                                              | 8000                                                         |                       |              |  |
| US name                                                                                                                                                                                                                                                                                                                                                                                           | <b>(</b> )                                                                                                                           | AMS 58                                                              | 833, 5                                             | 5834                                                         |                       |              |  |
| EN number                                                                                                                                                                                                                                                                                                                                                                                         | í                                                                                                                                    | 2.4711                                                              |                                                    |                                                              |                       |              |  |
| ISO name                                                                                                                                                                                                                                                                                                                                                                                          | <b>(</b> )                                                                                                                           | ISO 583                                                             | 32, IS                                             | 0 15156                                                      | -3                    |              |  |
| GB (Chinese) name                                                                                                                                                                                                                                                                                                                                                                                 | <b>(</b> )                                                                                                                           | YB/T52                                                              | 53 : 1                                             | 1993                                                         |                       |              |  |
| JIS (Japanese) name                                                                                                                                                                                                                                                                                                                                                                               | ()                                                                                                                                   | NAS60                                                               | 4PH                                                |                                                              |                       |              |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, ArcelorMittal (FRANCE)                                                                                                                                                                                                                                                                                       |                                                                                                                                      |                                                                     |                                                    |                                                              |                       |              |  |
| ELGILOY, Elgiloy Specialty Metals (ÚS<br>PHYNOX, ArcelorMittal (FRANCE)<br>Composition overview                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                     |                                                    |                                                              |                       |              |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, ArcelorMittal (FRANCE)                                                                                                                                                                                                                                                                                       | A)                                                                                                                                   | ties: Si<1.                                                         | 2, C<                                              | :0.15, Be                                                    | <0.1, P<0.0           | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, Arcelor/littal (FRANCE)<br>Composition overview<br>Compositional summary ①<br>Co39-42 / Cr18-22 / Ni14-18 / Fe6.5-22                                                                                                                                                                                         | A)                                                                                                                                   |                                                                     |                                                    |                                                              | <0.1, P<0.0           | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Eigiloy Specialty Metals (US<br>PHYNOX, ArcelorMittal (FRANCE)<br>Composition overview<br>Compositional summary ①                                                                                                                                                                                                                                    | / Mo6-8 / Mn1-2.5 (impuri                                                                                                            | ties: Si<1.<br>Metal (r<br>Co (Col                                  | non-fe                                             |                                                              | <0.1, P<0.0           | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, Arcelor/littal (FRANCE)<br>Composition overview<br>Compositional summary ①<br>Co39-42 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material                                                                                                                                                     | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>①                                                                                                  | Metal (r<br>Co (Col                                                 | non-fe                                             |                                                              | <0.1, P<0.0           | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, ArcelorMittal (FRANCE)<br>Composition overview<br>Compositional summary ①<br>Co39-42 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce                                                                                                                    | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>①<br>ramics and glasses)                                                                           | Metal (r<br>Co (Col                                                 | non-fe<br>balt)                                    | errous)                                                      |                       | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, Arcelor/Mittal (FRANCE)<br>Compositional summary ①<br>Co3942 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)                                                                                                                          | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>①<br>ramics and glasses)<br>②                                                                      | Metal (r<br>Co (Col                                                 | non-fe<br>balt)<br>-                               | errous)<br>0.1                                               | %                     | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGLOY, Elgiloy Specialty Metals (US<br>PHYNOX, Arcelor/Mittal (FRANCE)<br>Compositional summary ①<br>Co3942 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)<br>C (carbon)                                                                                                             | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>①<br>Tramics and glasses)<br>①<br>①                                                                | Metal (r<br>Co (Col<br>0<br>0                                       | non-fe<br>balt)                                    | 0.1<br>0.15                                                  | %                     | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGLOY, Elgiloy Specialty Metals (US<br>PHYNOX, ArcelorMittal (FRANCE)<br>Compositional summary ①<br>Co3942 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)<br>Co (carbon)<br>Co (cobalt)                                                                                              | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                         | Metal (r<br>Co (Col<br>0<br>0<br>39                                 | non-fe<br>balt)<br>-<br>-                          | 0.1<br>0.15<br>42                                            | %<br>%<br>%           | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGIUY, Elgiloy Specialty Metals (US<br>PHYNOX, ArcelorMittal (FRANCE)<br>Compositional summary ①<br>Co39-42 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)<br>C (carbon)<br>Co (cobalt)<br>Cr (chromium)                                                                             | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>Tamics and glasses)<br>①<br>①<br>①<br>①<br>①                                                       | Metal (r<br>Co (Col<br>0<br>0<br>39<br>18.5                         | non-fe<br>balt)<br>-                               | 0.1<br>0.15<br>42<br>21.5                                    | %<br>%<br>%           | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, Arcelor/Mittal (FRANCE)<br>Compositional summary ①<br>Co3942 / Crt8-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)<br>C (carbon)<br>Co (cobalt)<br>Cr (chromium)<br>Fe (iron)                                                               | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>ramics and glasses)<br>①<br>①<br>①<br>①<br>②<br>②<br>②                                             | Metal (r<br>Co (Col<br>0<br>39<br>18.5<br>6.52                      | non-fe<br>balt)<br>-<br>-<br>-                     | 0.1<br>0.15<br>42<br>21.5<br>21.5                            | %<br>%<br>%<br>%      | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, Arcelor/Mittal (FRANCE)<br>Compositional summary ①<br>Co3942 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)<br>C (carbon)<br>C (carbon)<br>C (cohomium)<br>Fe (icon)<br>Mn (manganese)                                               | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>Tamics and glasses)<br>①<br>①<br>①<br>①<br>①                                                       | Metal (r<br>Co (Col<br>0<br>0<br>39<br>18.5                         | non-fe<br>balt)<br>-<br>-<br>-<br>-                | 0.1<br>0.15<br>42<br>21.5<br>21.5                            | %<br>%<br>%           | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, ArcelorMittal (FRANCE)<br>Composition overview<br>Composition al summary ①<br>Co39-42 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)<br>C (carbon)<br>Co (cobalt)<br>Cr (chromium)<br>Fe (iron)<br>Mn (manganese)<br>Mo (molybdenum) | / Mo6-8 / Mn1-2.5 (impuri<br>0<br>5<br>ramics and glasses)<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                        | Metal (r<br>Co (Col<br>0<br>39<br>18.5<br>6.52<br>1                 | non-fe<br>balt)<br>-<br>-<br>-<br>-<br>-           | 0.1<br>0.15<br>42<br>21.5<br>2.5<br>8                        | %<br>%<br>%<br>%<br>% | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, Arcelor/Mittal (FRANCE)<br>Compositional summary ①<br>Co39-42 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)<br>C (carbon)<br>Co (cobalt)<br>Cr (chromium)<br>Fe (iron)<br>Mn (manganese)<br>Mo (molydenum)<br>Ni (nickel)           | / Mo6-8 / Mn1-2.5 (impuri<br>①<br>①<br>③<br>mamics and glasses)<br>①<br>①<br>①<br>①<br>①<br>①<br>①<br>①<br>①<br>①<br>②<br>①          | Metal (r<br>Co (Col<br>0<br>39<br>18.5<br>6.52<br>1<br>6            | non-fe<br>balt)<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.1<br>0.15<br>42<br>21.5<br>2.5<br>8                        | %<br>%<br>%<br>%<br>% | 15, S<0.015) |  |
| CONICHROME, Carpenter Technology<br>ELGILOY, Elgiloy Specialty Metals (US<br>PHYNOX, ArcelorMittal (FRANCE)<br>Composition overview<br>Composition al summary ①<br>Co39-42 / Cr18-22 / Ni14-18 / Fe6.5-22<br>Material family<br>Base material<br>Composition detail (metals, ce<br>Be (beryllium)<br>C (carbon)<br>Co (cobalt)<br>Cr (chromium)<br>Fe (iron)<br>Mn (manganese)<br>Mo (molybdenum) | / Mo6-8 / Mn1-2.5 (impuri<br>()<br>ramics and glasses)<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | Metal (r<br>Co (Col<br>0<br>0<br>39<br>18.5<br>6.52<br>1<br>6<br>14 | non-fe<br>balt)<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.1<br>0.15<br>42<br>21.5<br>21.5<br>2.5<br>8<br>18<br>0.015 | %<br>%<br>%<br>%<br>% | 15, S<0.015) |  |

### Cobalt-base-superalloy, Elgiloy/Phynox, cold worked, aged Datasheet view: All attributes Physical properties Density 0.3 Ib/in^3 Mechanical properties Young's modulus **(i)** 28.9 - 30.1 10^6 psi Specific stiffness ( 8.03e6 - 8.36e6 lbf.ft/lb ( 180 Yield strength (elastic limit) - 261 ksi Tensile strength ( 257 - 341 ksi Specific strength ( 4.98e4 - 7.26e4 lbf.ft/lb Elongation ( 1 - 17 % strain **(i)** Compressive strength \* 180 - 261 ksi Flexural modulus (i) \* 28.9 - 30.2 10^6 psi Flexural strength (modulus of rupture) () \* 180 - 261 ksi Shear modulus 1 11.1 - 11.3 10^6 psi () \* 23.2 10^6 psi Bulk modulus - 26.1 i 0.293 Poisson's ratio - 0.308 ( Shape factor 12 - 731 Hardness - Vickers (i) 519 HV Hardness - Rockwell C () \* 50 - 61 HRC Hardness - Brinell (i) \* 120 - 150 HB Elastic stored energy (springs) (i) 47 - 93.5 ft.lbf/in^3 Fatigue strength at 10<sup>A</sup>7 cycles (i) \* 108 - 141 ksi Fatigue strength model (stress amplitude) \* 91.4 - 167 ksi Parameters: Stress Ratio = -1, Number of Cycles = 1e7cycles Fatigue strength model (stress amplitude) (ksi) R 100 1000 10000 100000 1e6 1e7 1e8 Number of Cycles

Stress Ratio=-1

| ~              | Show/Hide 🗘 Fir                                                                 | nd Similar 👻        |                    |
|----------------|---------------------------------------------------------------------------------|---------------------|--------------------|
| <b>i</b>       | 2.61e3 - 2.66e3 °                                                               | °F                  |                    |
| (i)            | Settings                                                                        | •                   | ×                  |
| ()<br>()<br>() | Labels Selection<br>Datasheet Chart                                             | Connection<br>Units | Privacy<br>Numbers |
| ()<br>()       | Unit options                                                                    |                     |                    |
| <b>i</b>       | Preferred Currency:                                                             | United Arab Emirate | es dirham (A 🗸     |
| <b>(i)</b>     | Preferred Unit System:                                                          | Metric              | ~                  |
| <b>i</b>       | Preferred Unit System:                                                          | Methic              |                    |
| ()<br>()<br>() | <ul> <li>◯ Use Absolute Units for</li> <li>◉ Use Display Units for T</li> </ul> |                     |                    |
| <b>i</b>       |                                                                                 |                     |                    |
| ()<br>()<br>() |                                                                                 |                     |                    |
| 1              | OK Car                                                                          | ncel Apply          | Help               |

| Cobalt-base-        | superalloy, Elgiloy, | /Phynox, cold v | vorked, | ag   | ed     |                |
|---------------------|----------------------|-----------------|---------|------|--------|----------------|
| Datasheet view: All | attributes           | ~               | 🗠 Shov  | v/Hi | de 🗘 🕀 | Find Similar 🔻 |
| Thermal prop        | erties               |                 |         |      |        |                |
| Melting point       |                      | <b>(</b> )      | 1.43e3  | -    | 1.46e3 | °C             |
| Maximum service     | temperature          | <b>(</b> )      | 428     | -    | 473    | °C             |
| Minimum service t   | emperature           | <b>(</b> )      | -194    | 7    | -176   | °C             |
| Thermal conductiv   | ity                  | (j)             | 12.4    | -    | 12.6   | W/m.°C         |
| Specific heat capa  | acity                | <b>(</b> )      | 446     | -    | 455    | J/kg.°C        |
| Thermal expansion   | n coefficient        | <b>(</b> )      | 12.4    | -    | 12.6   | µstrain/⁰C     |
| Thermal shock res   | sistance             | 0               | 487     | 7    | 709    | °C             |
| Thermal distortion  | resistance           | <b>(</b> )      | * 0.986 | 2    | 1.01   | MW/m           |

(i) \* 352

- 426

kJ/kg

### Cobalt-base-superalloy, Elgiloy/Phynox, cold worked, aged

Latent heat of fusion

| Datasheet view: All attributes                                                             | ~          | 🗠 Show/Hide                                                                 | 🕂 Find Similar 🔻                                                         |                                                                                                              |   |  |  |
|--------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---|--|--|
| Durability                                                                                 |            |                                                                             |                                                                          | Design Note                                                                                                  | × |  |  |
| Water (fresh)                                                                              | (i)        | Excellent                                                                   |                                                                          | 🕞 Back 🕘 Forward 📋 Copy 🖨 Print                                                                              |   |  |  |
| Water (salt)                                                                               | ()         | Excellent                                                                   |                                                                          |                                                                                                              |   |  |  |
| Weak acids                                                                                 | ()         | Excellent                                                                   |                                                                          | Stress corrosion cracking                                                                                    | 1 |  |  |
| Strong acids                                                                               | <b>(i)</b> | Acceptable                                                                  |                                                                          | Stress corrosion cracking                                                                                    |   |  |  |
| Weak alkalis                                                                               | 0          | Excellent                                                                   |                                                                          | The resistance of the material to stress corrosion cracking                                                  |   |  |  |
| Strong alkalis                                                                             | ()         | Acceptable<br>Excellent<br>Excellent<br>Excellent<br>Excellent<br>Excellent |                                                                          | <ul> <li>(SCC). Crack growth is caused by the combined effects of<br/>stress and chemical attack.</li> </ul> |   |  |  |
| Organic solvents                                                                           | <b>(i)</b> | Excellent                                                                   |                                                                          |                                                                                                              |   |  |  |
| Oxidation at 500C                                                                          | ()         | Excellent                                                                   |                                                                          | Test notes                                                                                                   |   |  |  |
| UV radiation (sunlight)                                                                    | 0          | Excellent                                                                   |                                                                          |                                                                                                              |   |  |  |
| Galling resistance (adhesive wear)<br>Notes<br>High resistance especially when self-mated. | (i)        | Excellent                                                                   |                                                                          | Materials are categorized qualitatively on the following four<br>point scale:                                |   |  |  |
| Flammability                                                                               | (i)        | Non-flammable                                                               |                                                                          | Highly susceptible     Susceptible                                                                           |   |  |  |
| Corrosion resistance of metals                                                             |            |                                                                             |                                                                          | Slightly susceptible     Not susceptible                                                                     |   |  |  |
| Stress corrosion cracking<br>Notes                                                         |            |                                                                             | May be susceptible in halide, ammonia,<br>austic, carbonate environments | Four factors are required for SCC to occur:                                                                  | ~ |  |  |

Cobalt-base-superalloy, Elgiloy/Phynox, cold worked, aged

Datasheet view: All attributes

V Show/Hide 🕂 Find Similar 🝷

| Processing | eneray. | CO2 foo | tprint 8  | water |
|------------|---------|---------|-----------|-------|
| riccooling | onorgy, | 001100  | sprinte o |       |

| ribessing energy, coz roophint & water                  |            |          |     |        |       |
|---------------------------------------------------------|------------|----------|-----|--------|-------|
| Casting energy                                          | <b>(</b> ) | * 11.3   | -   | 12.5   | MJ/kg |
| Casting CO2                                             | (j)        | * 0.845  | -   | 0.934  | kg/kg |
| Casting water                                           | ()         | * 21.3   | 12  | 32     | l/kg  |
| Roll forming, forging energy                            | <b>(i)</b> | * 11.7   | -   | 12.9   | MJ/kg |
| Roll forming, forging CO2                               | <b>(i)</b> | * 0.876  | -   | 0.969  | kg/kg |
| Roll forming, forging water                             | i          | * 6.55   | -   | 9.82   | l/kg  |
| Extrusion, foil rolling energy                          | (i)        | * 23.1   | -   | 25.5   | MJ/kg |
| Extrusion, foil rolling CO2                             | i          | * 1.73   | -   | 1.91   | kg/kg |
| Extrusion, foil rolling water                           | i          | * 11.4   | -   | 17.1   | l/kg  |
| Wire drawing energy                                     | i          | * 85.8   | -   | 94.8   | MJ/kg |
| Wire drawing CO2                                        | i          | * 6.43   | 828 | 7.11   | kg/kg |
| Wire drawing water                                      | i          | * 32.3   | -   | 48.5   | l/kg  |
| Metal powder forming energy                             | Û          | * 36.1   | -   | 40     | MJ/kg |
| Metal powder forming CO2                                | <b>(</b> ) | * 2.89   | -   | 3.2    | kg/kg |
| Metal powder forming water                              | <b>(</b> ) | * 39.5   | 12  | 59.2   | l/kg  |
| Vaporization energy                                     | i          | * 1.54e4 | ~   | 1.71e4 | MJ/kg |
| Vaporization CO2                                        | i          | * 1.16e3 | -   | 1.28e3 | kg/kg |
| Vaporization water                                      | i          | * 6.44e3 | -   | 9.65e3 | l/kg  |
| Coarse machining energy (per unit wt removed)           | <b>(i)</b> | * 2.18   | -   | 2.41   | MJ/kg |
| Coarse machining CO2 (per unit wt removed)              | <b>(</b> ) | * 0.164  | -   | 0.181  | kg/kg |
| Fine machining energy (per unit wt removed)             | <b>(i)</b> | * 17.6   | -   | 19.4   | MJ/kg |
| Fine machining CO2 (per unit wt removed)                | <b>i</b>   | * 1.32   | -   | 1.46   | kg/kg |
| Grinding energy (per unit wt removed)                   | <b>(i)</b> | * 34.7   | 12  | 38.3   | MJ/kg |
| Grinding CO2 (per unit wt removed)                      | i          | * 2.6    | -   | 2.87   | kg/kg |
| Non-conventional machining energy (per unit wt removed) | i          | * 154    | -   | 171    | MJ/kg |
| Non-conventional machining CO2 (per unit wt removed)    | (j)        | * 11.6   |     | 12.8   | kg/kg |

### Recycling and end of life

| Recycle                            | (i)        | 1      |   |      |       |  |
|------------------------------------|------------|--------|---|------|-------|--|
| Embodied energy, recycling         | (i)        | * 33.6 | - | 37.2 | MJ/kg |  |
| CO2 footprint, recycling           | <b>(</b> ) | * 2.64 |   | 2.92 | kg/kg |  |
| Recycle fraction in current supply | <b>(</b> ) | 0.1    |   |      | %     |  |
| Downcycle                          | <b>(</b> ) | 1      |   |      |       |  |
| Combust for energy recovery        | <b>(</b> ) | ×      |   |      |       |  |
| Landfill                           | (i)        | 1      |   |      |       |  |
| Biodegrade                         | (i)        | ×      |   |      |       |  |

### Report comparison

| Report comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                           |                                                           |                                                        |                                                              | U                                                           | JAEU                                             | جامعة الإمارات العربيـة<br>rab Emirates University        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
| ↔ Home 🗄 Browse Q Search 🎼 Chart/Select 🖡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 📱 Solver 🛱 Eco Audit 🔗 Synthesizer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 🗌 Learn 💥 Tools 🕶                                       | Settings ? Help                                           | •                                                         |                                                        |                                                              | _                                                           |                                                  |                                                           |
| Selection Project ×<br>1. Selection Data<br>Database: Level 3 Aerospace Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Image: Comparison - MaterialUniverse         Image: Comparison - Materi |                                                         |                                                           |                                                           | Comparison - MaterialUniverse                          | x                                                            |                                                             |                                                  |                                                           |
| Select from: Custom: MaterialUniverse   Reference:  Not set  Selection Stages  Chart/Index  Limit  C Tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nickel-chromium alloy,<br>INCONEL 600, spring<br>temper | Nickel-chromium alloy,<br>INCONEL 600, wire<br>(spring)   | Nickel-copper alloy,<br>MONEL 400, spring<br>temper, wire | Cobalt-base-superalloy,<br>Elgiloy/Phynox,<br>annealed | Cobalt-base-<br>superalloy, Elgiloy/<br>Phynox, cold worked, | Cobalt-base-<br>superalloy, Elgiloy/<br>Phynox, cold worked | Nickel-Cu-Al-Ti alloy,<br>MONEL K-500, hot rolle | Nickel-Cu-Al-Ti alloy,<br>d MONEL K-500, age-<br>hardened |
| Image: Stage 1: Cost per unit of elastic stored energy vs. Mass per unit of ela | Computed Properties<br>Cost per unit of elastic stored energy<br>Mass per unit of elastic stored energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 - 184<br>1.42 - 2.57                                | 58.2 - 118<br>0.827 - 1.65                                | 76.5 - 145<br>1.14 - 2.14                                 | 792 - 1190<br>8.07 - 8.71                              | aged<br>58.2 - 132<br>0.521 - 1.1                            | 57.7 - 134<br>0.515 - 1.12                                  | 764 - 1250<br>11.6 - 18.7                        | 140 - 214<br>2.14 - 3.2                                   |
| < > >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | General information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                           |                                                           |                                                        |                                                              |                                                             |                                                  |                                                           |
| 3. Results: 286 of 1629 pass 🔹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spring temper                                           |                                                           | Spring temper                                             | Annealed                                               | Aged                                                         | Cold worked                                                 | Hot rolled                                       | Age-hardened                                              |
| Show: Pass all Stages 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UNS number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N06600                                                  | N06600                                                    | N04400                                                    | R30003, R30008                                         | R30003, R30008                                               | R30003, R30008                                              | N05500                                           | N05500                                                    |
| Rank by:       Alphabetical         Name          Cobalt-base-superalloy, Elgiloy/Phynox, annealed          Cobalt-base-superalloy, Elgiloy/Phynox, cold worked          Cobalt-base-superalloy, Elgiloy/Phynox, cold worked          Cobalt-base-superalloy, Elgiloy/Phynox, cold worked          Cobalt-base-superalloy, CCM, cast          Cobalt-base-superalloy, Cr-Ni alloy, A-286, solution treated & a          Low alloy steel, D6AC, quenched & tempered          Low alloy steel, Hy-Tuf, quenched & tempered          Nickel, commercial purity, grade 200, hard (spring temper)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | US name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | ASTM Grade N06600; AMS<br>5540, 5580, 5665, 5687,<br>7232 |                                                           |                                                        | AMS 5833, 5834                                               | AMS 5833, 5834                                              | AMS 4676; ASTM Grade<br>N05500, Ni 500           | AMS 4676; ASTM Grade<br>N05500, Ni 500                    |
| B Nickel, commercial purity, grade 200, soft (annealed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EN name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NiCr15Fe                                                | NiCr15Fe                                                  | NICu30Fe                                                  |                                                        |                                                              |                                                             | NICU30AI                                         | NICU30AI                                                  |
| Bickel, commercial purity, grade 200, spring temper, wire     Bickel, commercial purity, grade 201, annealed, low carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EN number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4816                                                  | 2.4816                                                    | 2.436                                                     | 2.4711                                                 | 2.4711                                                       | 2.4711                                                      | 2.4375                                           | 2.4375                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ISO name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ISO 9723, 9724, 9725, 6208,<br>6207, 4955A              | ISO 9723, 9724, 9725, 6208,<br>6207, 4955A                |                                                           | ISO 5832, ISO 15156-3                                  | ISO 5832, ISO 15156-3                                        | ISO 5832, ISO 15156-3                                       |                                                  |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GB (Chinese) name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                           | GB 5235 Grade<br>NiCu28-2.5-1.5                           | YB/T5253 : 1993                                        | YB/T5253 : 1993                                              | YB/T5253 : 1993                                             |                                                  |                                                           |
| Image: State in the image | JIS (Japanese) name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                                                           | JIS H 4551 NCuP                                           | NAS604PH                                               | NAS604PH                                                     | NAS604PH                                                    |                                                  |                                                           |
| Nickel-chromium alloy, INCONEL 690, annealed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Included in Materials Data for Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |                                                           |                                                           |                                                        |                                                              | 1                                                           |                                                  | ×                                                         |
| Comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                           |                                                           |                                                        |                                                              |                                                             |                                                  |                                                           |

### Report generation

| ਜ਼ Hor                                                                                                                                                                                          | me 🗄 Browse Q Search 🔐 Chart/Select                                                                             | हिंब Solver 💭 Eco Audit 🔗 Synthesizer         | Learn 💥 Tools 🔻          | Settings 🧿 Help            | ·                         |                               |                              | -                    |                         |                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|----------------------------|---------------------------|-------------------------------|------------------------------|----------------------|-------------------------|------------------------|--|
| Selection P                                                                                                                                                                                     | roject ×                                                                                                        | 🛱 Home 💹 Stage 1 💎 Stage 2 🖻 Cob              | alt-base-superalloy 🖻 Ni | ckel-Cr-Fe alloy, IN 🖻 Nic | kel-Cr-Co-Mo alloy, 🏟     | Comparison - MaterialUniverse | x                            |                      |                         |                        |  |
| 1. Selectio                                                                                                                                                                                     | n Data 🔹 👻                                                                                                      | Comparison - MaterialUniverse                 |                          |                            |                           |                               |                              |                      |                         |                        |  |
| Database:                                                                                                                                                                                       | Level 3 Aerospace Change                                                                                        | Companson - Materialoniverse                  |                          |                            |                           |                               |                              |                      |                         |                        |  |
| Select from:                                                                                                                                                                                    | Custom: MaterialUniverse ~                                                                                      | III All Data ■ Project Data ↔ Ranges え Av     | erages # Values % Cha    | nge Highlight % Change >   | 10 Apply                  |                               |                              |                      |                         |                        |  |
| Reference:                                                                                                                                                                                      | 芩 Not set Set                                                                                                   |                                               | Nickel-chromium alloy,   | Nickel-chromium alloy,     | Nickel-copper alloy,      | Cobalt-base-superalloy,       | Cobalt-base-                 | Cobalt-base-         | Nickel-Cu-Al-Ti alloy,  | Nickel-Cu-Al-Ti alloy, |  |
| 2. Selectio                                                                                                                                                                                     |                                                                                                                 |                                               | INCONEL 600, spring      | INCONEL 600, wire          | MONEL 400, spring         | Elgiloy/Phynox,               | superalloy, Elgiloy/         | superalloy, Elgiloy/ | MONEL K-500, hot rolled |                        |  |
|                                                                                                                                                                                                 | Index V Limit 🙄 Tree                                                                                            |                                               | temper                   | (spring)                   | temper, wire              | annealed                      | Phynox, cold worked,<br>aged | Phynox, cold worked  |                         | hardened               |  |
| <ul> <li>☑ I Stage 1: Cost per unit of elastic stored energy vs. Mass per unit of elastic stored energy vs. Mass per unit of elastic Stage 2: Young's modulus, Hardness - Rockwell C</li> </ul> |                                                                                                                 | Computed Properties                           |                          |                            |                           |                               | 0800                         | <u> </u>             |                         |                        |  |
|                                                                                                                                                                                                 |                                                                                                                 |                                               |                          |                            |                           |                               |                              |                      |                         |                        |  |
|                                                                                                                                                                                                 |                                                                                                                 | General information                           |                          |                            |                           |                               |                              |                      |                         |                        |  |
|                                                                                                                                                                                                 |                                                                                                                 | Composition overview                          |                          |                            |                           |                               |                              |                      |                         |                        |  |
| <                                                                                                                                                                                               | > 286 of 1629 pass •                                                                                            | Composition detail (metals, ceramics and glas | ises)                    |                            |                           |                               |                              |                      |                         |                        |  |
| -                                                                                                                                                                                               | Pass all Stages                                                                                                 | Price                                         |                          |                            |                           |                               |                              |                      |                         |                        |  |
| 1                                                                                                                                                                                               |                                                                                                                 | Price (AED/kg)                                | 65.4 - 76.8              | 65.4 - 76.8                | 62.4 - 73.1               | 94.8 - 141                    | 94.8 - 141                   | 94.8 - 141           | 61.3 - 71.6             | 61.3 - 71.6            |  |
| Rank by:                                                                                                                                                                                        | Alphabetical V                                                                                                  | Price per unit volume (AED/m^3)               | 547000 - 654000          | 547000 - 654000            | 547000 - 650000           | 786000 - <mark>1</mark> .17e6 | 786000 - 1.17e6              | 786000 - 1.17e6      | 514000 - 613000         | 514000 - 613000        |  |
| 🙆 Name                                                                                                                                                                                          |                                                                                                                 | Physical properties                           |                          |                            |                           |                               |                              |                      |                         |                        |  |
|                                                                                                                                                                                                 | alt-base-superalloy, Elgiloy/Phynox, annealed                                                                   | Density (kg/m^3)                              | 8350 - 8500              | 8350 - 8500                | 8750 - 8900               | 8300                          | 8300                         | 8300                 | 8400 - 8550             | 8400 - 8550            |  |
|                                                                                                                                                                                                 | alt-base-superalloy, Elgiloy/Phynox, cold worked<br>alt-base-superalloy, Elgiloy/Phynox, cold worked, aged      | Mechanical properties                         |                          |                            |                           |                               |                              |                      |                         |                        |  |
| Coba                                                                                                                                                                                            | alt-based-superalloy, CCM, cast                                                                                 | Young's modulus (GPa)                         | 195 - 220                | 195 - 220                  | 170 - 188                 | 198 - 211                     | 199 - 208                    | 193 - 204            | 170 - <mark>1</mark> 88 | 170 - 188              |  |
|                                                                                                                                                                                                 | -base-superalloy, Cr-Ni alloy, A-286, solution treated & a                                                      | Young's modulus with temperature (GPa) #      |                          |                            |                           |                               |                              | 188                  |                         | 179                    |  |
|                                                                                                                                                                                                 | alloy steel, D6AC, quenched & tempered<br>alloy steel, Hy-Tuf, quenched & tempered                              | Specific stiffness (MN.m/kg)                  | 23.1 - 26.1              | 23. <mark>1</mark> - 26.1  | 19.3 - 21.3               | 23.9 - 25. <mark>4</mark>     | 24 - 25                      | 23.3 - 24.5          | 20 - 22.2               | 20 - 22.2              |  |
|                                                                                                                                                                                                 | el, commercial purity, grade 200, hard (spring temper)                                                          | Yield strength (elastic limit) (MPa)          | 825 - 1110               | 1030 - 1450                | 860 - 1180                | 446 - 455                     | 1240 - 1800                  | 1210 - 1790          | 285 - 360               | 690 - 840              |  |
|                                                                                                                                                                                                 | el, commercial purity, grade 200, soft (annealed)                                                               | Yield strength with temperature (MPa) #       |                          |                            |                           |                               |                              | 1430                 |                         | 765                    |  |
|                                                                                                                                                                                                 | el, commercial purity, grade 200, spring temper, wire<br>el, commercial purity, grade 201, annealed, low carbon | Tensile strength (MPa)                        | 1000 - 1180              | 1170 - 1520                | 1000 - <mark>1</mark> 250 | 808 - 942                     | 1770 - 2350                  | 1570 - 2230          | 620 - 760               | 930 - 1160             |  |
|                                                                                                                                                                                                 | el, commercial purity, grade 201, annealed                                                                      | Tensile strength with temperature (MPa) #     |                          |                            |                           |                               |                              |                      |                         |                        |  |
| D B Nicks                                                                                                                                                                                       | el, commercial purity, grade 270                                                                                | Specific strength (kN.m/kg)                   | 97.9 - 131               | 122 - 172                  | 97.4 - 133                | 53.7 - 54.8                   | 149 - 217                    | 146 - 215            | 33.6 - 42.5             | 81.4 - 99.2            |  |
|                                                                                                                                                                                                 | el, Duranickel Alloy 301, annealed & aged<br>el, Permanickel Alloy 300, annealed                                | Elongation (% strain)                         | 2 - 10                   | 2 - 5                      | 2 - 5                     | 64.3 - 65.7                   | 1 - 17                       | 3.8 - 5              | 35 - 50                 | 20 - 30                |  |
|                                                                                                                                                                                                 | el, Permanickel Alloy 300, annealed<br>el, Permanickel Alloy 300, annealed & aged                               | Tangent modulus (MPa)                         |                          |                            |                           |                               |                              | 10200                |                         | 2090                   |  |
|                                                                                                                                                                                                 | el-chromium alloy, HASTELLOY G, solution treated                                                                | Compressive strength (MPa)                    | 825 - 1110               | 1030 - 1450                | 860 - 1180                | 446 - 455                     | 1240 - 1800                  | 1210 - 1790          | 285 - 360               | 690 - 840              |  |
|                                                                                                                                                                                                 | el-chromium alloy, HASTELLOY G-3, solution treated                                                              | Flexural modulus (GPa)                        | 195 - 220                | 195 - 220                  | 170 - 188                 | 198 - 211                     | 199 - 208                    | 193 - 204            | 170 - <mark>1</mark> 88 | 170 - 188              |  |
|                                                                                                                                                                                                 | el-chromium alloy, HAYNES 230, annealed<br>el-chromium alloy, INCONEL 600, annealed                             | Flexural strength (modulus of rupture) (MPa)  | 825 - 1110               | 1030 - 1450                | 860 - 1180                | 446 - 455                     | 1240 - 1800                  | 1210 - 1790          | 285 - 360               | 690 - 840              |  |
|                                                                                                                                                                                                 | el-chromium alloy, INCONEL 600, anneaied<br>el-chromium alloy, INCONEL 600, cold drawn                          | Shear modulus (GPa)                           | 74 - 86                  | 74 - 86                    | 62 - 72                   | 76.2 - 77.8                   | 76.2 - 77.8                  | 76.2 - 77.8          | 62 - 72                 | 62 - 72                |  |
| 🗌 🗎 Nicks                                                                                                                                                                                       | el-chromium alloy, INCONEL 600, cold worked                                                                     | Bulk modulus (GPa)                            | 146 - 184                | 146 - 184                  | 148 - 186                 | 159 - 183                     | 160 - 180                    | 155 - 176            | 148 - 186               | 148 - 186              |  |
|                                                                                                                                                                                                 | el-chromium alloy, INCONEL 600, hard                                                                            | Poisson's ratio                               | 0.28 - 0.3               | 0.28 - 0.3                 | 0.31 - 0.33               | 0.292 - 0.308                 | 0.292 - 0.308                | 0.292 - 0.308        | 0.31 - 0.33             | 0.31 - 0.33            |  |
|                                                                                                                                                                                                 | el-chromium alloy, INCONEL 600, hot worked<br>el-chromium alloy, INCONEL 600, spring temper                     | Shape factor                                  | 18                       | 1                          | 1                         | 26                            | 12                           | 12                   | 28                      | 19                     |  |
|                                                                                                                                                                                                 | el-chromium alloy, INCONEL 600, spring temper                                                                   | Hardness - Vickers (HV)                       | 310 - 350                | 350 - 450                  | 350 - 450                 | 194 - 256                     | 519 - 731                    | 400 - 550            | 100 - 200               | 300 - 400              |  |
| 🗌 📴 Nicks                                                                                                                                                                                       | el-chromium alloy, INCONEL 625, annealed                                                                        | Hardness - Rockwell B (HRB)                   | 106 - 109                | 109 - 115                  | 109 - 115                 | 91 - 100                      | 2.12 101                     | 112 - 119            | 51 - 92                 | 105 - 112              |  |
|                                                                                                                                                                                                 | el-chromium alloy, INCONEL 671, annealed                                                                        | Hardness - Rockwell C (HRC)                   | 31 - 36                  | 36 - 45                    | 36 - 45                   | 10 - 23                       | 50 - 61                      | 41 - 52              | 0 - 11                  | 30 - 41                |  |
|                                                                                                                                                                                                 | el-chromium alloy, INCONEL 686, annealed<br>el-chromium alloy, INCONEL 690, annealed                            | Hardness - Brinell (HB)                       | 303 - 334                | 334 - 424                  | 332 - 425                 | 188 - 240                     | 120 - 150                    | 381 - 515            | 84 - 193                | 284 - 379              |  |
| . Report                                                                                                                                                                                        |                                                                                                                 | Flastic stored energy (springs) (kl/m^3)      | 1670 - 2910              | 2620 - 4970                | 2110 - 3790               | 477 - 514                     | 3890 - 7740                  | 3810 - 7800          | 229 - 360               | 1340 - 1970            |  |
| -                                                                                                                                                                                               | parison                                                                                                         | generation in pdf                             |                          |                            |                           |                               |                              |                      |                         | >                      |  |
| de Com                                                                                                                                                                                          |                                                                                                                 | . generation in pur                           |                          |                            |                           |                               |                              |                      |                         | 0 - 8 - 6              |  |

جامعة الإمارات العربية المتحدة United Arab Emirates University

## Technical ceramics

Composites

Natural materials

Foams

Motals and al

### Non-technical ceramics

Polymers

# Thank You

VYSHAK SURESHKUMAR

202090275

(edo) sniubom s'gnuo?